Generators Module¶
gigaspatial.generators ¶
poi ¶
PoiViewGenerator ¶
POI View Generator for integrating various geospatial datasets such as Google Open Buildings, Microsoft Global Buildings, GHSL Built Surface, and GHSL Settlement Model (SMOD) data with Points of Interest (POIs).
This class provides methods to load, process, and map external geospatial data to a given set of POIs, enriching them with relevant attributes. It leverages handler/reader classes for efficient data access and processing.
The POIs can be initialized from a list of (latitude, longitude) tuples, a list of dictionaries, a pandas DataFrame, or a geopandas GeoDataFrame.
Source code in gigaspatial/generators/poi.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 | |
points_gdf: gpd.GeoDataFrame property ¶
Gets the internal GeoDataFrame of points of interest.
view: pd.DataFrame property ¶
The DataFrame representing the current point of interest view.
__init__(points, poi_id_column='poi_id', config=None, data_store=None, logger=None) ¶
Initializes the PoiViewGenerator with the input points and configurations.
The input points are converted into an internal GeoDataFrame (_points_gdf) for consistent geospatial operations.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
points | Union[List[Tuple[float, float]], List[dict], DataFrame, GeoDataFrame] | The input points of interest. Can be: - A list of (latitude, longitude) tuples. - A list of dictionaries, where each dict must contain 'latitude' and 'longitude' keys. - A pandas DataFrame with 'latitude' and 'longitude' columns. - A geopandas GeoDataFrame (expected to have a 'geometry' column representing points). | required |
generator_config | Optional[PoiViewGeneratorConfig] | Configuration for the POI view generation process. If None, a default | required |
data_store | Optional[DataStore] | An instance of a data store for managing data access (e.g., LocalDataStore). If None, a default | None |
Source code in gigaspatial/generators/poi.py
chain_operations(operations) ¶
Chain multiple mapping operations for fluent interface.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
operations | List[dict] | List of dicts with 'method' and 'kwargs' keys | required |
Example
generator.chain_operations([ {'method': 'map_google_buildings', 'kwargs': {}}, {'method': 'map_built_s', 'kwargs': {'map_radius_meters': 200}}, ])
Source code in gigaspatial/generators/poi.py
find_nearest_buildings(country, search_radius=1000, source_filter=None, find_nearest_globally=False, **kwargs) ¶
Find the nearest building to each POI within a specified search radius.
This method processes building data by: 1. Filtering to only building tiles that intersect POI buffers (partitioned datasets) 2. Finding the nearest building candidate per POI (nearest-neighbor search) 3. Computing final POI-to-building distances in meters using haversine distance
Parameters¶
country : str Country code for which to load building data.
float, default=1000
Search radius in meters. Only buildings within this distance from a POI will be considered. For better performance, use the smallest radius that meets your requirements.
{'google', 'microsoft'}, optional
Filter buildings by data source. If None, uses buildings from all sources.
bool, default=False
If True, finds the true nearest building regardless of distance. This overrides search_radius and may be significantly slower. When False, uses the efficient radius-limited search.
**kwargs : dict Additional arguments passed to the building data handler.
Returns¶
pd.DataFrame DataFrame with columns: - poi_id: Original POI identifier - nearest_building_distance_m: Distance to nearest building in meters. NaN if no building found within the search constraints. - building_within_{search_radius}m: Boolean indicating if a building was found within the specified search_radius.
Notes¶
- Distances are computed in meters using haversine (great-circle) distance via
calculate_distance. - Nearest-neighbor candidate selection is performed using coordinates extracted from geometries.
- For countries with a single building file (no partitioning), the search is performed globally regardless of search_radius.
- For partitioned countries, search_radius optimizes performance by filtering which tiles to process.
Examples¶
Find buildings within 350m of POIs¶
result = poi_gdf.find_nearest_buildings("USA", search_radius=350)
Find nearest building globally (may be slow for partitioned countries)¶
result = poi_gdf.find_nearest_buildings("USA", find_nearest_globally=True)
Source code in gigaspatial/generators/poi.py
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 | |
map_built_s(map_radius_meters=150, stat='sum', dataset_year=2020, dataset_resolution=100, output_column='built_surface_m2', **kwargs) ¶
Maps GHSL Built Surface (GHS_BUILT_S) data to the POIs.
Calculates the sum of built surface area within a specified buffer radius around each POI. Enriches points_gdf with the 'built_surface_m2' column.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data_config | Optional[GHSLDataConfig] | Configuration for accessing GHSL Built Surface data. If None, a default | required |
map_radius_meters | float | The buffer distance in meters around each POI to calculate zonal statistics for built surface. Defaults to 150 meters. | 150 |
**kwargs | Additional keyword arguments passed to the data reader (if applicable). | {} |
Returns:
| Type | Description |
|---|---|
DataFrame | pd.DataFrame: The updated GeoDataFrame with a new column: 'built_surface_m2'. Returns a copy of the current |
Source code in gigaspatial/generators/poi.py
map_google_buildings(handler=None, **kwargs) ¶
Maps Google Open Buildings data to the POIs by finding the nearest building.
Enriches the points_gdf with the ID and distance to the nearest Google Open Building for each POI.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data_config | Optional[GoogleOpenBuildingsConfig] | Configuration for accessing Google Open Buildings data. If None, a default | required |
**kwargs | Additional keyword arguments passed to the data reader (if applicable). | {} |
Returns:
| Type | Description |
|---|---|
DataFrame | pd.DataFrame: The updated GeoDataFrame with new columns: 'nearest_google_building_id' and 'nearest_google_building_distance'. Returns a copy of the current |
Source code in gigaspatial/generators/poi.py
map_ms_buildings(handler=None, **kwargs) ¶
Maps Microsoft Global Buildings data to the POIs by finding the nearest building.
Enriches the points_gdf with the ID and distance to the nearest Microsoft Global Building for each POI. If buildings don't have an ID column, creates a unique ID using the building's coordinates.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data_config | Optional[MSBuildingsConfig] | Configuration for accessing Microsoft Global Buildings data. If None, a default | required |
**kwargs | Additional keyword arguments passed to the data reader (if applicable). | {} |
Returns:
| Type | Description |
|---|---|
DataFrame | pd.DataFrame: The updated GeoDataFrame with new columns: 'nearest_ms_building_id' and 'nearest_ms_building_distance'. Returns a copy of the current |
Source code in gigaspatial/generators/poi.py
map_nearest_points(points_df, id_column=None, lat_column=None, lon_column=None, output_prefix='nearest', **kwargs) ¶
Maps nearest points from a given DataFrame to the POIs.
Enriches the points_gdf with the ID and distance to the nearest point from the input DataFrame for each POI.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
points_df | Union[DataFrame, GeoDataFrame] | DataFrame containing points to find nearest neighbors from. Must have latitude and longitude columns or point geometries. | required |
id_column | str | Name of the column containing unique identifiers for each point. If None, the index of points_df will be used instead. | None |
lat_column | str | Name of the latitude column in points_df. If None, will attempt to detect it or extract from geometry if points_df is a GeoDataFrame. | None |
lon_column | str | Name of the longitude column in points_df. If None, will attempt to detect it or extract from geometry if points_df is a GeoDataFrame. | None |
output_prefix | str | Prefix for the output column names. Defaults to "nearest". | 'nearest' |
**kwargs | Additional keyword arguments passed to the data reader (if applicable). | {} |
Returns:
| Type | Description |
|---|---|
DataFrame | pd.DataFrame: The updated GeoDataFrame with new columns: '{output_prefix}_id' and '{output_prefix}_distance'. Returns a copy of the current |
Raises:
| Type | Description |
|---|---|
ValueError | If required columns are missing from points_df or if coordinate columns cannot be detected or extracted from geometry. |
Source code in gigaspatial/generators/poi.py
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | |
map_smod(stat='median', dataset_year=2020, dataset_resolution=1000, output_column='smod_class', **kwargs) ¶
Maps GHSL Settlement Model (SMOD) data to the POIs.
Samples the SMOD class value at each POI's location. Enriches points_gdf with the 'smod_class' column.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data_config | Optional[GHSLDataConfig] | Configuration for accessing GHSL SMOD data. If None, a default | required |
**kwargs | Additional keyword arguments passed to the data reader (if applicable). | {} |
Returns:
| Type | Description |
|---|---|
DataFrame | pd.DataFrame: The updated GeoDataFrame with a new column: 'smod_class'. Returns a copy of the current |
Source code in gigaspatial/generators/poi.py
map_zonal_stats(data, stat='mean', map_radius_meters=None, output_column='zonal_stat', value_column=None, predicate='intersects', **kwargs) ¶
Maps zonal statistics from raster or polygon data to POIs.
Can operate in three modes: 1. Raster point sampling: Directly samples raster values at POI locations 2. Raster zonal statistics: Creates buffers around POIs and calculates statistics within them 3. Polygon aggregation: Aggregates polygon data to POI buffers with optional area weighting
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data | Union[TifProcessor, List[TifProcessor], GeoDataFrame] | Either a TifProcessor object, a list of TifProcessor objects (which will be merged into a single TifProcessor for processing), or a GeoDataFrame containing polygon data to aggregate. | required |
stat | str | For raster data: Statistic to calculate ("sum", "mean", "median", "min", "max"). For polygon data: Aggregation method to use. Defaults to "mean". | 'mean' |
map_radius_meters | float | If provided, creates circular buffers of this radius around each POI and calculates statistics within the buffers. If None, samples directly at POI locations (only for raster data). | None |
output_column | str | Name of the output column to store the results. Defaults to "zonal_stat". | 'zonal_stat' |
value_column | str | For polygon data: Name of the column to aggregate. Required for polygon data. Not used for raster data. | None |
predicate | Literal['intersects', 'within', 'fractional'] | The spatial relationship to use for aggregation. Defaults to "intersects". | 'intersects' |
**kwargs | Additional keyword arguments passed to the sampling/aggregation functions. | {} |
Returns:
| Type | Description |
|---|---|
DataFrame | pd.DataFrame: The updated GeoDataFrame with a new column containing the calculated statistics. Returns a copy of the current |
Raises:
| Type | Description |
|---|---|
ValueError | If no valid data is provided, if parameters are incompatible, or if required parameters (value_column) are missing for polygon data. |
Source code in gigaspatial/generators/poi.py
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 | |
save_view(name, output_format=None) ¶
Saves the current POI view (the enriched DataFrame) to a file.
The output path and format are determined by the config or overridden by the output_format parameter.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name | str | The base name for the output file (without extension). | required |
output_format | Optional[str] | The desired output format (e.g., "csv", "geojson"). If None, the | None |
Returns:
| Name | Type | Description |
|---|---|---|
Path | Path | The full path to the saved output file. |
Source code in gigaspatial/generators/poi.py
to_dataframe() ¶
Returns the current POI view as a DataFrame.
This method combines all accumulated variables in the view
Returns:
| Type | Description |
|---|---|
DataFrame | pd.DataFrame: The current view. |
Source code in gigaspatial/generators/poi.py
to_geodataframe() ¶
Returns the current POI view merged with the original point geometries as a GeoDataFrame.
This method combines all accumulated variables in the view with the corresponding point geometries, providing a spatially-enabled DataFrame for further analysis or export.
Returns:
| Type | Description |
|---|---|
GeoDataFrame | gpd.GeoDataFrame: The current view merged with point geometries. |
Source code in gigaspatial/generators/poi.py
validate_data_coverage(data_bounds) ¶
Validate how many POIs fall within the data coverage area.
Returns:
| Name | Type | Description |
|---|---|---|
dict | dict | Coverage statistics |
Source code in gigaspatial/generators/poi.py
PoiViewGeneratorConfig ¶
Configuration for POI (Point of Interest) view generation.
Attributes:
| Name | Type | Description |
|---|---|---|
base_path | Path | The base directory where generated POI views will be saved. Defaults to a path retrieved from |
output_format | str | The default format for saving output files (e.g., "csv", "geojson"). Defaults to "csv". |
Source code in gigaspatial/generators/poi.py
zonal ¶
admin ¶
AdminBoundariesViewGenerator ¶
Bases: GeometryBasedZonalViewGenerator[T]
Generates zonal views using administrative boundaries as the zones.
This class specializes in creating zonal views where the zones are defined by administrative boundaries (e.g., countries, states, districts) at a specified administrative level. It extends the GeometryBasedZonalViewGenerator and leverages the AdminBoundaries handler to load the necessary geographical data.
The administrative boundaries serve as the base geometries to which other geospatial data (points, polygons, rasters) can be mapped and aggregated.
Attributes:
| Name | Type | Description |
|---|---|---|
country | str | The name or code of the country for which to load administrative boundaries. |
admin_level | int | The administrative level to load (e.g., 0 for country, 1 for states/provinces). |
admin_path | Union[str, Path] | Optional path to a local GeoJSON/Shapefile containing the administrative boundaries. If provided, this local file will be used instead of downloading. |
config | Optional[ZonalViewGeneratorConfig] | Configuration for the zonal view generation process. |
data_store | Optional[DataStore] | A DataStore instance for accessing data. |
logger | Optional[Logger] | A logger instance for logging messages. |
Source code in gigaspatial/generators/zonal/admin.py
__init__(country, admin_level, data_store=None, admin_path=None, config=None, logger=None) ¶
Initializes the AdminBoundariesViewGenerator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
country | str | The name or code of the country (e.g., "USA", "Germany"). | required |
admin_level | int | The administrative level to load (e.g., 0 for country, 1 for states, 2 for districts). | required |
admin_path | Union[str, Path] | Path to a local administrative boundaries file (GeoJSON, Shapefile). If provided, overrides default data loading. | None |
config | Optional[ZonalViewGeneratorConfig] | Configuration for the zonal view generator. If None, a default config will be used. | None |
data_store | Optional[DataStore] | Data storage interface. If None, LocalDataStore is used. | None |
logger | Optional[Logger] | Custom logger instance. If None, a default logger is used. | None |
Source code in gigaspatial/generators/zonal/admin.py
base ¶
ZonalViewGenerator ¶
Bases: ABC, Generic[T]
Base class for mapping data to zonal datasets.
This class provides the framework for mapping various data sources (points, polygons, rasters) to zonal geometries like grid tiles or catchment areas. It serves as an abstract base class that must be subclassed to implement specific zonal systems.
The class supports three main types of data mapping: - Point data aggregation to zones - Polygon data aggregation with optional area weighting - Raster data sampling and statistics
Attributes:
| Name | Type | Description |
|---|---|---|
data_store | DataStore | The data store for accessing input data. |
generator_config | ZonalViewGeneratorConfig | Configuration for the generator. |
logger | Logger instance for this class. |
Source code in gigaspatial/generators/zonal/base.py
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 | |
view: pd.DataFrame property ¶
The DataFrame representing the current zonal view.
Returns:
| Type | Description |
|---|---|
DataFrame | pd.DataFrame: The DataFrame containing zone IDs, and any added variables. If no variables have been added, it returns the base |
zone_gdf: gpd.GeoDataFrame property ¶
Cached GeoDataFrame of zones.
Returns:
| Type | Description |
|---|---|
GeoDataFrame | gpd.GeoDataFrame: Lazily-computed and cached GeoDataFrame of zone geometries and identifiers. |
__init__(config=None, data_store=None, logger=None) ¶
Initialize the ZonalViewGenerator.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
generator_config | ZonalViewGeneratorConfig | Configuration for the generator. If None, uses default configuration. | required |
data_store | DataStore | The data store for accessing input data. If None, uses LocalDataStore. | None |
Source code in gigaspatial/generators/zonal/base.py
add_variable_to_view(data_dict, column_name) ¶
Adds a new variable (column) to the zonal view GeoDataFrame.
This method takes a dictionary (typically the result of map_points or map_polygons) and adds its values as a new column to the internal _view (or zone_gdf if not yet initialized). The dictionary keys are expected to be the zone_id values.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data_dict | Dict | A dictionary where keys are | required |
column_name | str | The name of the new column to be added to the GeoDataFrame. | required |
Source code in gigaspatial/generators/zonal/base.py
get_zonal_geometries() abstractmethod ¶
Get the geometries of the zones.
This method must be implemented by subclasses to return the actual geometric shapes of the zones (e.g., grid tiles, catchment boundaries, administrative areas).
Returns:
| Type | Description |
|---|---|
List[Polygon] | List[Polygon]: A list of Shapely Polygon objects representing zone geometries. |
Source code in gigaspatial/generators/zonal/base.py
get_zone_geodataframe() ¶
Convert zones to a GeoDataFrame.
Creates a GeoDataFrame containing zone identifiers and their corresponding geometries in WGS84 (EPSG:4326) coordinate reference system.
Returns:
| Type | Description |
|---|---|
GeoDataFrame | gpd.GeoDataFrame: A GeoDataFrame with 'zone_id' and 'geometry' columns, where zone_id contains the identifiers and geometry contains the corresponding Polygon objects. |
Source code in gigaspatial/generators/zonal/base.py
get_zone_identifiers() abstractmethod ¶
Get unique identifiers for each zone.
This method must be implemented by subclasses to return identifiers that correspond one-to-one with the geometries returned by get_zonal_geometries().
Returns:
| Type | Description |
|---|---|
List[T] | List[T]: A list of zone identifiers (e.g., quadkeys, H3 indices, tile IDs). The type T is determined by the specific zonal system implementation. |
Source code in gigaspatial/generators/zonal/base.py
map_points(points, value_columns=None, aggregation='count', predicate='within', output_suffix='') ¶
Map point data to zones with spatial aggregation.
Aggregates point data to zones using spatial relationships. Points can be counted or have their attribute values aggregated using various statistical methods.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
points | Union[DataFrame, GeoDataFrame] | The point data to map. Must contain geometry information if DataFrame. | required |
value_columns | Union[str, List[str]] | Column name(s) containing values to aggregate. If None, only point counts are performed. | None |
aggregation | Union[str, Dict[str, str]] | Aggregation method(s) to use. Can be a single string ("count", "mean", "sum", "min", "max", etc.) or a dictionary mapping column names to aggregation methods. | 'count' |
predicate | str | Spatial predicate for point-to-zone relationship. Options include "within", "intersects", "contains". Defaults to "within". | 'within' |
output_suffix | str | Suffix to add to output column names. Defaults to empty string. | '' |
Returns:
| Name | Type | Description |
|---|---|---|
Dict | Dict | Dictionary with zone IDs as keys and aggregated values as values. If value_columns is None, returns point counts per zone. If value_columns is specified, returns aggregated values per zone. |
Source code in gigaspatial/generators/zonal/base.py
map_polygons(polygons, value_columns=None, aggregation='count', predicate='intersects', **kwargs) ¶
Maps polygon data to the instance's zones and aggregates values.
This method leverages aggregate_polygons_to_zones to perform a spatial aggregation of polygon data onto the zones stored within this object instance. It can count polygons, or aggregate their values, based on different spatial relationships defined by the predicate.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
polygons | Union[DataFrame, GeoDataFrame] | The polygon data to map. Must contain geometry information if a DataFrame. | required |
value_columns | Union[str, List[str]] | The column name(s) from the | None |
aggregation | Union[str, Dict[str, str]] | The aggregation method(s) to use. Can be a single string (e.g., "sum", "mean", "max") or a dictionary mapping column names to specific aggregation methods. This is ignored and set to "count" if | 'count' |
predicate | Literal[intersects, within, fractional] | The spatial relationship to use for aggregation: - "intersects": Counts or aggregates values for any polygon that intersects a zone. - "within": Counts or aggregates values for polygons that are entirely contained within a zone. - "fractional": Performs area-weighted aggregation. The value of a polygon is distributed proportionally to the area of its overlap with each zone. Defaults to "intersects". | 'intersects' |
**kwargs | Additional keyword arguments to be passed to the underlying | {} |
Returns:
| Name | Type | Description |
|---|---|---|
Dict | Dict | A dictionary or a nested dictionary containing the aggregated values, with zone IDs as keys. If |
Raises:
| Type | Description |
|---|---|
ValueError | If |
Example
Assuming 'self' is an object with a 'zone_gdf' attribute¶
Count all land parcels that intersect each zone¶
parcel_counts = self.map_polygons(landuse_polygons)
Aggregate total population within zones using area weighting¶
population_by_zone = self.map_polygons( ... landuse_polygons, ... value_columns="population", ... predicate="fractional", ... aggregation="sum" ... )
Get the sum of residential area and count of buildings within each zone¶
residential_stats = self.map_polygons( ... building_polygons, ... value_columns=["residential_area_sqm", "building_id"], ... aggregation={"residential_area_sqm": "sum", "building_id": "count"}, ... predicate="intersects" ... )
Source code in gigaspatial/generators/zonal/base.py
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 | |
map_rasters(raster_data, stat='mean', **kwargs) ¶
Map raster data to zones using zonal statistics.
Samples raster values within each zone and computes statistics. Automatically handles coordinate reference system transformations between raster and zone data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
raster_data | Union[TifProcessor, List[TifProcessor]] | Either a TifProcessor object or a list of TifProcessor objects (which will be merged into a single TifProcessor for processing). | required |
mapping_function | Callable | Custom function for mapping rasters to zones. If provided, signature should be mapping_function(self, tif_processors, **mapping_kwargs). When used, stat and other parameters except mapping_kwargs are ignored. | required |
stat | str | Statistic to calculate when aggregating raster values within each zone. Options include "mean", "sum", "min", "max", "std", etc. Defaults to "mean". | 'mean' |
**mapping_kwargs | Additional keyword arguments for raster data. | required |
Returns:
| Name | Type | Description |
|---|---|---|
Dict | Dict | By default, returns a dictionary of sampled values with zone IDs as keys. |
Note
If the coordinate reference system of the rasters differs from the zones, the zone geometries will be automatically transformed to match the raster CRS.
Source code in gigaspatial/generators/zonal/base.py
save_view(name, output_format=None) ¶
Save the generated zonal view to disk.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name | str | Base name for the output file (without extension). | required |
output_format | str | File format to save in (e.g., "parquet", "geojson", "shp"). If None, uses the format specified in config. | None |
Returns:
| Name | Type | Description |
|---|---|---|
Path | Path | The full path where the view was saved. |
Note
The output directory is determined by the config.base_path setting. The file extension is automatically added based on the output format. This method now saves the internal self.view.
Source code in gigaspatial/generators/zonal/base.py
to_dataframe() ¶
Returns the current zonal view as a DataFrame.
This method combines all accumulated variables in the view
Returns:
| Type | Description |
|---|---|
DataFrame | pd.DataFrame: The current view. |
Source code in gigaspatial/generators/zonal/base.py
to_geodataframe() ¶
Returns the current zonal view merged with zone geometries as a GeoDataFrame.
This method combines all accumulated variables in the view with the corresponding zone geometries, providing a spatially-enabled DataFrame for further analysis or export.
Returns:
| Type | Description |
|---|---|
GeoDataFrame | gpd.GeoDataFrame: The current view merged with zone geometries. |
Source code in gigaspatial/generators/zonal/base.py
ZonalViewGeneratorConfig ¶
Bases: BaseModel
Configuration for zonal view generation.
Attributes:
| Name | Type | Description |
|---|---|---|
base_path | Path | Base directory path for storing zonal views. Defaults to configured zonal views path. |
output_format | str | Default output format for saved views. Defaults to "parquet". |
Source code in gigaspatial/generators/zonal/base.py
geometry ¶
GeometryBasedZonalViewGenerator ¶
Bases: ZonalViewGenerator[T]
Mid-level class for zonal view generation based on geometries with identifiers.
This class serves as an intermediate between the abstract ZonalViewGenerator and specific implementations like MercatorViewGenerator or H3ViewGenerator. It handles the common case where zones are defined by a mapping between zone identifiers and geometries, either provided as a dictionary or as a GeoDataFrame.
The class extends the base functionality with methods for mapping common geospatial datasets including GHSL (Global Human Settlement Layer), Google Open Buildings, and Microsoft Global Buildings data.
Attributes:
| Name | Type | Description |
|---|---|---|
zone_dict | Dict[T, Polygon] | Mapping of zone identifiers to geometries. |
zone_id_column | str | Name of the column containing zone identifiers. |
zone_data_crs | str | Coordinate reference system of the zone data. |
_zone_gdf | GeoDataFrame | Cached GeoDataFrame representation of zones. |
data_store | DataStore | For accessing input data. |
config | ZonalViewGeneratorConfig | Configuration for view generation. |
logger | ZonalViewGeneratorConfig | Logger instance for this class. |
Source code in gigaspatial/generators/zonal/geometry.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 | |
zone_gdf: gpd.GeoDataFrame property ¶
Override the base class zone_gdf property to ensure correct column names.
Returns:
| Type | Description |
|---|---|
GeoDataFrame | gpd.GeoDataFrame: A GeoDataFrame with 'zone_id' and 'geometry' columns. |
__init__(zone_data, zone_id_column='zone_id', zone_data_crs='EPSG:4326', config=None, data_store=None, logger=None) ¶
Initialize with zone geometries and identifiers.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
zone_data | Union[Dict[T, Polygon], GeoDataFrame] | Zone definitions. Either a dictionary mapping zone identifiers to Polygon/MultiPolygon geometries, or a GeoDataFrame with geometries and a zone identifier column. | required |
zone_id_column | str | Name of the column containing zone identifiers. Only used if zone_data is a GeoDataFrame. Defaults to "zone_id". | 'zone_id' |
zone_data_crs | str | Coordinate reference system of the zone data. Defaults to "EPSG:4326" (WGS84). | 'EPSG:4326' |
config | ZonalViewGeneratorConfig | Generator configuration. If None, uses default configuration. | None |
data_store | DataStore | Data store for accessing input data. If None, uses LocalDataStore. | None |
Raises:
| Type | Description |
|---|---|
TypeError | If zone_data is not a dictionary or GeoDataFrame, or if dictionary values are not Polygon/MultiPolygon geometries. |
ValueError | If zone_id_column is not found in GeoDataFrame, or if the provided CRS doesn't match the GeoDataFrame's CRS. |
Source code in gigaspatial/generators/zonal/geometry.py
get_zonal_geometries() ¶
Get the geometry of each zone.
Returns:
| Type | Description |
|---|---|
List[Polygon] | List[Polygon]: A list of zone geometries in the order they appear in the underlying GeoDataFrame. |
Source code in gigaspatial/generators/zonal/geometry.py
get_zone_geodataframe() ¶
Convert zones to a GeoDataFrame with standardized column names.
Returns:
| Type | Description |
|---|---|
GeoDataFrame | gpd.GeoDataFrame: A GeoDataFrame with 'zone_id' and 'geometry' columns. The zone_id column is renamed from the original zone_id_column if different. |
Source code in gigaspatial/generators/zonal/geometry.py
get_zone_identifiers() ¶
Get the identifier for each zone.
Returns:
| Type | Description |
|---|---|
List[T] | List[T]: A list of zone identifiers in the order they appear in the underlying GeoDataFrame. |
Source code in gigaspatial/generators/zonal/geometry.py
map_buildings(country, source_filter=None, output_column='building_count', **kwargs) ¶
Map Google-Microsoft combined buildings data to zones.
Efficiently counts buildings within each zone by leveraging spatial indexing and S2 grid partitioning. For partitioned datasets, only loads building tiles that intersect with zones, significantly improving performance for large countries.
The method uses Shapely's STRtree for fast spatial queries, enabling efficient intersection testing between millions of buildings and zone geometries.
Parameters¶
country : str ISO 3166-1 alpha-3 country code (e.g., 'USA', 'BRA', 'IND'). Must match the country codes used in the building dataset.
{'google', 'microsoft'}, optional
Filter buildings by data source. Options: - 'google': Only count buildings from Google Open Buildings - 'microsoft': Only count buildings from Microsoft Global Buildings - None (default): Count buildings from both sources
str, default='building_count'
Name of the column to add to the view containing building counts. Must be a valid pandas column name.
**kwargs : dict Additional keyword arguments passed to GoogleMSBuildingsHandler. Common options include data versioning or custom data paths.
Returns¶
pd.DataFrame Updated view DataFrame with building counts added. The DataFrame includes all original zone columns plus the new output_column containing integer counts of buildings per zone.
Notes¶
Algorithm Overview: 1. Single-file countries: Processes all zones against the entire dataset in one pass (optimal for small countries or non-partitioned data).
- Partitioned countries: Uses S2 grid spatial index to:
- Identify which S2 cells intersect with zones
- Load only intersecting building tiles (not entire country)
- Process each tile independently for memory efficiency
- Accumulate counts across tiles
Performance Characteristics: - For partitioned data with N zones and M S2 tiles: * Only loads ~sqrt(M) tiles that intersect zones (huge savings) * Uses STRtree with O(log k) query time per zone * Memory usage: O(max_buildings_per_tile + N)
- For single-file data:
- Loads entire building dataset once
- Single STRtree query for all zones (vectorized)
The spatial query uses the 'intersects' predicate, meaning a building is counted if its polygon boundary touches or overlaps with a zone's boundary. Buildings on zone borders may be counted in multiple zones.
Examples¶
Count all buildings in H3 hexagons across the USA:
h3_zones = H3ViewGenerator(resolution=8, bbox=usa_bbox) h3_zones.map_buildings("USA") print(h3_zones.view[['zone_id', 'building_count']].head()) zone_id building_count 0 88...01 1250 1 88...02 890 2 88...03 0
Count only Google buildings with custom column name:
zones.map_buildings( ... "BRA", ... source_filter="google", ... output_column="google_building_count" ... )
Compare building counts from different sources:
zones.map_buildings("IND", source_filter="google", ... output_column="google_buildings") zones.map_buildings("IND", source_filter="microsoft", ... output_column="ms_buildings") zones.view['total_buildings'] = ( ... zones.view['google_buildings'] + zones.view['ms_buildings'] ... )
See Also¶
map_google_buildings : Map Google Open Buildings data only map_ms_buildings : Map Microsoft Global Buildings data only GoogleMSBuildingsHandler : Handler for combined building datasets
References¶
.. [1] Google Open Buildings: https://sites.research.google/open-buildings/ .. [2] Microsoft Global Buildings: https://github.com/microsoft/GlobalMLBuildingFootprints
Source code in gigaspatial/generators/zonal/geometry.py
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 | |
map_built_s(year=2020, resolution=100, stat='sum', output_column='built_surface_m2', **kwargs) ¶
Map GHSL Built-up Surface data to zones.
Convenience method for mapping Global Human Settlement Layer Built-up Surface data using appropriate default parameters for built surface analysis.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
year | The year of the data (default: 2020) | 2020 | |
resolution | The resolution in meters (default: 100) | 100 | |
stat | str | Statistic to calculate for built surface values within each zone. Defaults to "sum" which gives total built surface area. | 'sum' |
output_column | str | The output column name. Defaults to "built_surface_m2". | 'built_surface_m2' |
Source code in gigaspatial/generators/zonal/geometry.py
map_ghsl(handler, stat, output_column=None, **kwargs) ¶
Map Global Human Settlement Layer data to zones.
Loads and processes GHSL raster data for the intersecting tiles, then samples the raster values within each zone using the specified statistic.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
hander | GHSLDataHandler | Handler for the GHSL data. | required |
stat | str | Statistic to calculate for raster values within each zone. Common options: "mean", "sum", "median", "min", "max". | required |
output_column | str | The output column name. If None, uses the GHSL product name in lowercase followed by underscore. | None |
Returns:
| Type | Description |
|---|---|
DataFrame | pd.DataFrame: Updated DataFrame with GHSL metrics. Adds a column named as |
Note
The method automatically determines which GHSL tiles intersect with the zones and loads only the necessary data for efficient processing.
Source code in gigaspatial/generators/zonal/geometry.py
map_google_buildings(handler=None, use_polygons=False, **kwargs) ¶
Map Google Open Buildings data to zones.
Processes Google Open Buildings dataset to calculate building counts and total building area within each zone. Can use either point centroids (faster) or polygon geometries (more accurate) for spatial operations.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
google_open_buildings_config | GoogleOpenBuildingsConfig | Configuration for accessing Google Open Buildings data. Uses default configuration if not provided. | required |
use_polygons | bool | Whether to use polygon geometries for buildings. If True, uses actual building polygons for more accurate area calculations but with slower performance. If False, uses building centroids with area values from attributes for faster processing. Defaults to False. | False |
Returns:
| Type | Description |
|---|---|
DataFrame | pd.DataFrame: Updated DataFrame with building metrics. Adds columns: - 'google_buildings_count': Number of buildings in each zone - 'google_buildings_area_in_meters': Total building area in square meters |
Note
If no Google Buildings data is found for the zones, returns the original GeoDataFrame unchanged with a warning logged.
Source code in gigaspatial/generators/zonal/geometry.py
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 | |
map_ms_buildings(handler=None, use_polygons=False) ¶
Map Microsoft Global Buildings data to zones.
Processes Microsoft Global Buildings dataset to calculate building counts and total building area within each zone. Can use either centroid points (faster) or polygon geometries (more accurate) for spatial operations.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ms_buildings_config | MSBuildingsConfig | Configuration for accessing Microsoft Global Buildings data. If None, uses default configuration. | required |
use_polygons | bool | Whether to use polygon geometries for buildings. If True, uses actual building polygons for more accurate area calculations but with slower performance. If False, uses building centroids with area values from attributes for faster processing. Defaults to False. | False |
Returns:
| Type | Description |
|---|---|
GeoDataFrame | gpd.GeoDataFrame: Updated GeoDataFrame with zones and building metrics. Adds columns: - 'ms_buildings_count': Number of buildings in each zone - 'ms_buildings_area_in_meters': Total building area in square meters |
Note
If no Microsoft Buildings data is found for the zones, returns the original GeoDataFrame unchanged with a warning logged. Building areas are calculated in meters using appropriate UTM projections.
Source code in gigaspatial/generators/zonal/geometry.py
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 | |
map_smod(year=2020, resolution=1000, stat='median', output_column='smod_class', **kwargs) ¶
Map GHSL Settlement Model data to zones.
Convenience method for mapping Global Human Settlement Layer Settlement Model data using appropriate default parameters for settlement classification analysis.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
year | The year of the data (default: 2020) | 2020 | |
resolution | The resolution in meters (default: 1000) | 1000 | |
stat | str | Statistic to calculate for settlement class values within each zone. Defaults to "median" which gives the predominant settlement class. | 'median' |
output_column | str | The output column name. Defaults to "smod_class". | 'smod_class' |
Source code in gigaspatial/generators/zonal/geometry.py
h3 ¶
H3ViewGenerator ¶
Bases: GeometryBasedZonalViewGenerator[T]
Generates zonal views using H3 hexagons as the zones.
Mirrors MercatorViewGenerator/S2ViewGenerator but uses H3 cells (resolutions 0-15). The input source defines the area/cells and resolution determines the granularity.
Supported sources: - Country string → CountryH3Hexagons.create - Shapely geometry or GeoDataFrame → H3Hexagons.from_spatial - List of points (shapely Points or (lon, lat) tuples) → from_spatial - List of H3 indexes (strings) → H3Hexagons.from_hexagons
Source code in gigaspatial/generators/zonal/h3.py
mercator ¶
MercatorViewGenerator ¶
Bases: GeometryBasedZonalViewGenerator[T]
Generates zonal views using Mercator tiles as the zones.
This class specializes in creating zonal views where the zones are defined by Mercator tiles. It extends the GeometryBasedZonalViewGenerator and leverages the MercatorTiles and CountryMercatorTiles classes to generate tiles based on various input sources.
The primary input source defines the geographical area of interest. This can be a country, a specific geometry, a set of points, or even a list of predefined quadkeys. The zoom_level determines the granularity of the Mercator tiles.
Attributes:
| Name | Type | Description |
|---|---|---|
source | Union[str, BaseGeometry, GeoDataFrame, List[Union[Point, Tuple[float, float]]], List[str]] | Specifies the geographic area or specific tiles to use. Can be: - A country name (str): Uses |
zoom_level | int | The zoom level of the Mercator tiles. Higher zoom levels result in smaller, more detailed tiles. |
predicate | str | The spatial predicate used when filtering tiles based on a spatial source (e.g., "intersects", "contains"). Defaults to "intersects". |
config | Optional[ZonalViewGeneratorConfig] | Configuration for the zonal view generation process. |
data_store | Optional[DataStore] | A DataStore instance for accessing data. |
logger | Optional[Logger] | A logger instance for logging. |
Methods:
| Name | Description |
|---|---|
_init_zone_data | Initializes the Mercator tile GeoDataFrame based on the input source. |
# Inherits other methods from GeometryBasedZonalViewGenerator, such as | |
Example
Create a MercatorViewGenerator for tiles covering Germany at zoom level 6¶
generator = MercatorViewGenerator(source="Germany", zoom_level=6)
Create a MercatorViewGenerator for tiles intersecting a specific polygon¶
polygon = ... # Define a Shapely Polygon generator = MercatorViewGenerator(source=polygon, zoom_level=8)
Create a MercatorViewGenerator from a list of quadkeys¶
quadkeys = ["0020023131023032", "0020023131023033"] generator = MercatorViewGenerator(source=quadkeys, zoom_level=12)
Source code in gigaspatial/generators/zonal/mercator.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | |
s2 ¶
S2ViewGenerator ¶
Bases: GeometryBasedZonalViewGenerator[T]
Generates zonal views using Google S2 cells as the zones.
This mirrors the MercatorViewGenerator but uses S2 cells (levels 0-30) as zone units. The primary input source defines the geographic area of interest and the level determines the granularity of S2 cells.
Attributes:
| Name | Type | Description |
|---|---|---|
source | Union[str, BaseGeometry, GeoDataFrame, List[Union[Point, Tuple[float, float]]], List[Union[int, str]]] | Specifies the geographic area or specific cells to use. Can be: - A country name (str): Uses |
level | int | The S2 level (0-30). Higher levels produce smaller cells. |
config | Optional[ZonalViewGeneratorConfig] | Configuration for generation. |
data_store | Optional[DataStore] | Optional data store instance. |
logger | Optional[Logger] | Optional logger. |
Source code in gigaspatial/generators/zonal/s2.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | |