Processing Module¶
gigaspatial.processing
¶
geo
¶
add_spatial_jitter(df, columns=['latitude', 'longitude'], amount=0.0001, seed=None, copy=True)
¶
Add random jitter to duplicated geographic coordinates to create slight separation between overlapping points.
Parameters:¶
df : pandas.DataFrame DataFrame containing geographic coordinates. columns : list of str, optional Column names containing coordinates to jitter. Default is ['latitude', 'longitude']. amount : float or dict, optional Amount of jitter to add. If float, same amount used for all columns. If dict, specify amount per column, e.g., {'lat': 0.0001, 'lon': 0.0002}. Default is 0.0001 (approximately 11 meters at the equator). seed : int, optional Random seed for reproducibility. Default is None. copy : bool, optional Whether to create a copy of the input DataFrame. Default is True.
Returns:¶
pandas.DataFrame DataFrame with jittered coordinates for previously duplicated points.
Raises:¶
ValueError If columns don't exist or jitter amount is invalid. TypeError If input types are incorrect.
Source code in gigaspatial/processing/geo.py
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
|
annotate_with_admin_regions(gdf, country_code, data_store=None, admin_id_column_suffix='_giga')
¶
Annotate a GeoDataFrame with administrative region information.
Performs a spatial join between the input points and administrative boundaries at levels 1 and 2, resolving conflicts when points intersect multiple admin regions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdf | GeoDataFrame | GeoDataFrame containing points to annotate | required |
country_code | str | Country code for administrative boundaries | required |
data_store | Optional[DataStore] | Optional DataStore for loading admin boundary data | None |
Returns:
Type | Description |
---|---|
GeoDataFrame | GeoDataFrame with added administrative region columns |
Source code in gigaspatial/processing/geo.py
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 |
|
buffer_geodataframe(gdf, buffer_distance_meters, cap_style='round', copy=True)
¶
Buffers a GeoDataFrame with a given buffer distance in meters.
- gdf : geopandas.GeoDataFrame The GeoDataFrame to be buffered.
- buffer_distance_meters : float The buffer distance in meters.
- cap_style : str, optional The style of caps. round, flat, square. Default is round.
- geopandas.GeoDataFrame The buffered GeoDataFrame.
Source code in gigaspatial/processing/geo.py
convert_to_geodataframe(data, lat_col=None, lon_col=None, crs='EPSG:4326')
¶
Convert a pandas DataFrame to a GeoDataFrame, either from latitude/longitude columns or from a WKT geometry column.
Parameters:¶
data : pandas.DataFrame Input DataFrame containing either lat/lon columns or a geometry column. lat_col : str, optional Name of the latitude column. Default is 'lat'. lon_col : str, optional Name of the longitude column. Default is 'lon'. crs : str or pyproj.CRS, optional Coordinate Reference System of the geometry data. Default is 'EPSG:4326'.
Returns:¶
geopandas.GeoDataFrame A GeoDataFrame containing the input data with a geometry column.
Raises:¶
TypeError If input is not a pandas DataFrame. ValueError If required columns are missing or contain invalid data.
Source code in gigaspatial/processing/geo.py
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
|
count_points_within_polygons(base_gdf, count_gdf, base_gdf_key)
¶
Counts the number of points from count_gdf
that fall within each polygon in base_gdf
.
Parameters:¶
base_gdf : geopandas.GeoDataFrame GeoDataFrame containing polygon geometries to count points within. count_gdf : geopandas.GeoDataFrame GeoDataFrame containing point geometries to be counted. base_gdf_key : str Column name in base_gdf
to use as the key for grouping and merging.
Returns:¶
geopandas.GeoDataFrame The base_gdf
with an additional column containing the count of points within each polygon.
Raises:¶
ValueError If base_gdf_key
is missing in base_gdf
.
Source code in gigaspatial/processing/geo.py
detect_coordinate_columns(data, lat_keywords=None, lon_keywords=None, case_sensitive=False)
¶
Detect latitude and longitude columns in a DataFrame using keyword matching.
Parameters:¶
data : pandas.DataFrame DataFrame to search for coordinate columns. lat_keywords : list of str, optional Keywords for identifying latitude columns. If None, uses default keywords. lon_keywords : list of str, optional Keywords for identifying longitude columns. If None, uses default keywords. case_sensitive : bool, optional Whether to perform case-sensitive matching. Default is False.
Returns:¶
tuple[str, str] Names of detected (latitude, longitude) columns.
Raises:¶
ValueError If no unique pair of latitude/longitude columns can be found. TypeError If input data is not a pandas DataFrame.
Source code in gigaspatial/processing/geo.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
|
map_points_within_polygons(base_points_gdf, polygon_gdf)
¶
Maps whether each point in base_points_gdf
is within any polygon in polygon_gdf
.
Parameters:¶
base_points_gdf : geopandas.GeoDataFrame GeoDataFrame containing point geometries to check. polygon_gdf : geopandas.GeoDataFrame GeoDataFrame containing polygon geometries.
Returns:¶
geopandas.GeoDataFrame The base_points_gdf
with an additional column is_within
(True/False).
Raises:¶
ValueError If the geometries in either GeoDataFrame are invalid or not of the expected type.
Source code in gigaspatial/processing/geo.py
overlay_aggregate_polygon_data(base_gdf, overlay_gdf, overlay_columns, base_gdf_key, overlay_gdf_key=None, agg_func='sum')
¶
Overlay polygon data and aggregate values over the base GeoDataFrame.
Parameters:¶
base_gdf : geopandas.GeoDataFrame GeoDataFrame representing the base geometries. overlay_gdf : geopandas.GeoDataFrame GeoDataFrame with polygon geometries to overlay and aggregate. overlay_columns : list of str Columns in overlay_gdf
to aggregate based on overlapping areas. base_gdf_key : str Column in base_gdf
to use as the key for aggregation. overlay_gdf_key : str, optional Column in overlay_gdf
to use as the index for merging. Defaults to the overlay GeoDataFrame's index. agg_func : str, callable, or dict, default="sum" Aggregation function or dictionary of column-specific aggregation functions. Examples: "sum", "mean", "max", or {"column1": "mean", "column2": "sum"}.
Returns:¶
geopandas.GeoDataFrame Base GeoDataFrame with aggregated values from the overlay.
Raises:¶
ValueError If the overlay GeoDataFrame has duplicate index values or missing columns. RuntimeError If any geometry operations fail.
Source code in gigaspatial/processing/geo.py
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
|
simplify_geometries(gdf, tolerance=0.01, preserve_topology=True, geometry_column='geometry')
¶
Simplify geometries in a GeoDataFrame to reduce file size and improve visualization performance.
Parameters¶
gdf : geopandas.GeoDataFrame GeoDataFrame containing geometries to simplify. tolerance : float, optional Tolerance for simplification. Larger values simplify more but reduce detail (default is 0.01). preserve_topology : bool, optional Whether to preserve topology while simplifying. Preserving topology prevents invalid geometries (default is True). geometry_column : str, optional Name of the column containing geometries (default is "geometry").
Returns¶
geopandas.GeoDataFrame A new GeoDataFrame with simplified geometries.
Raises¶
ValueError If the specified geometry column does not exist or contains invalid geometries. TypeError If the geometry column does not contain valid geometries.
Examples¶
Simplify geometries in a GeoDataFrame:
simplified_gdf = simplify_geometries(gdf, tolerance=0.05)
Source code in gigaspatial/processing/geo.py
sat_images
¶
calculate_pixels_at_location(gdf, resolution, bbox_size=300, crs='EPSG:3857')
¶
Calculates the number of pixels required to cover a given bounding box around a geographic coordinate, given a resolution in meters per pixel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdf | a geodataframe with Point geometries that are geographic coordinates | required | |
resolution | float | Desired resolution (meters per pixel). | required |
bbox_size | float | Bounding box size in meters (default 300m x 300m). | 300 |
crs | str | Target projection (default is EPSG:3857). | 'EPSG:3857' |
Returns:
Name | Type | Description |
---|---|---|
int | Number of pixels per side (width and height). |
Source code in gigaspatial/processing/sat_images.py
tif_processor
¶
TifProcessor
¶
A class to handle tif data processing, supporting single-band, RGB, and RGBA data.
Source code in gigaspatial/processing/tif_processor.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
|
bounds
property
¶
Get the bounds of the TIF file
count: int
property
¶
Get the band count from the TIF file
crs
property
¶
Get the coordinate reference system from the TIF file
nodata: int
property
¶
Get the value representing no data in the rasters
resolution: Tuple[float, float]
property
¶
Get the x and y resolution (pixel width and height or pixel size) from the TIF file
tabular: pd.DataFrame
property
¶
Get the data from the TIF file
transform
property
¶
Get the transform from the TIF file
x_transform: float
property
¶
Get the x transform from the TIF file
y_transform: float
property
¶
Get the y transform from the TIF file
__post_init__()
¶
Validate inputs and set up logging.
Source code in gigaspatial/processing/tif_processor.py
get_zoned_geodataframe()
¶
Convert the processed TIF data into a GeoDataFrame, where each row represents a pixel zone. Each zone is defined by its bounding box, based on pixel resolution and coordinates.
Source code in gigaspatial/processing/tif_processor.py
open_dataset()
¶
Context manager for accessing the dataset
Source code in gigaspatial/processing/tif_processor.py
sample_by_polygons(polygon_list, stat='mean')
¶
Sample raster values within each polygon of a GeoDataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
polygon_list | List[Union[Polygon, MultiPolygon]] | List of polygon geometries (can include MultiPolygons). | required |
stat | str | Aggregation statistic to compute within each polygon. Options: "mean", "median", "sum", "min", "max". | 'mean' |
Returns:
Name | Type | Description |
---|---|---|
GeoDataFrame | GeoDataFrame | A copy of the input GeoDataFrame with an added column containing sampled raster values. |
Source code in gigaspatial/processing/tif_processor.py
sample_multiple_tifs_by_coordinates(tif_processors, coordinate_list)
¶
Sample raster values from multiple TIFF files for given coordinates.
Parameters: - tif_processors: List of TifProcessor instances. - coordinate_list: List of (x, y) coordinates.
Returns: - A NumPy array of sampled values, taking the first non-nodata value encountered.
Source code in gigaspatial/processing/tif_processor.py
sample_multiple_tifs_by_polygons(tif_processors, polygon_list, stat='mean')
¶
Sample raster values from multiple TIFF files for polygons in a list and join the results.
Parameters: - tif_processors: List of TifProcessor instances. - polygon_list: List of polygon geometries (can include MultiPolygons). - stat: Aggregation statistic to compute within each polygon (mean, median, sum, min, max).
Returns: - A NumPy array of sampled values, taking the first non-nodata value encountered.
Source code in gigaspatial/processing/tif_processor.py
utils
¶
assign_id(df, required_columns, id_column='id')
¶
Generate IDs for any entity type in a pandas DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df | DataFrame | Input DataFrame containing entity data | required |
required_columns | List[str] | List of column names required for ID generation | required |
id_column | str | Name for the id column that will be generated | 'id' |
Returns:
Type | Description |
---|---|
DataFrame | pd.DataFrame: DataFrame with generated id column |