Processing Module¶
gigaspatial.processing
¶
DataStore
¶
Bases: ABC
Abstract base class defining the interface for data store implementations. This class serves as a parent for both local and cloud-based storage solutions.
Source code in gigaspatial/core/io/data_store.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
|
file_exists(path)
abstractmethod
¶
Check if a file exists in the data store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path | str | Path to check | required |
Returns:
Type | Description |
---|---|
bool | True if file exists, False otherwise |
is_dir(path)
abstractmethod
¶
Check if path points to a directory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path | str | Path to check | required |
Returns:
Type | Description |
---|---|
bool | True if path is a directory, False otherwise |
is_file(path)
abstractmethod
¶
Check if path points to a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path | str | Path to check | required |
Returns:
Type | Description |
---|---|
bool | True if path is a file, False otherwise |
list_files(path)
abstractmethod
¶
List all files in a directory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path | str | Directory path to list | required |
Returns:
Type | Description |
---|---|
List[str] | List of file paths in the directory |
open(file, mode='r')
abstractmethod
¶
Context manager for file operations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file | str | Path to the file | required |
mode | str | File mode ('r', 'w', 'rb', 'wb') | 'r' |
Yields:
Type | Description |
---|---|
Union[str, bytes] | File-like object |
Raises:
Type | Description |
---|---|
IOError | If file cannot be opened |
Source code in gigaspatial/core/io/data_store.py
read_file(path)
abstractmethod
¶
Read contents of a file from the data store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path | str | Path to the file to read | required |
Returns:
Type | Description |
---|---|
Any | Contents of the file |
Raises:
Type | Description |
---|---|
IOError | If file cannot be read |
Source code in gigaspatial/core/io/data_store.py
remove(path)
abstractmethod
¶
Remove a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path | str | Path to the file to remove | required |
Raises:
Type | Description |
---|---|
IOError | If file cannot be removed |
rmdir(dir)
abstractmethod
¶
Remove a directory and all its contents.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dir | str | Path to the directory to remove | required |
Raises:
Type | Description |
---|---|
IOError | If directory cannot be removed |
walk(top)
abstractmethod
¶
Walk through directory tree, similar to os.walk().
Parameters:
Name | Type | Description | Default |
---|---|---|---|
top | str | Starting directory for the walk | required |
Returns:
Type | Description |
---|---|
Generator | Generator yielding tuples of (dirpath, dirnames, filenames) |
Source code in gigaspatial/core/io/data_store.py
write_file(path, data)
abstractmethod
¶
Write data to a file in the data store.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path | str | Path where to write the file | required |
data | Any | Data to write to the file | required |
Raises:
Type | Description |
---|---|
IOError | If file cannot be written |
Source code in gigaspatial/core/io/data_store.py
LocalDataStore
¶
Bases: DataStore
Implementation for local filesystem storage.
Source code in gigaspatial/core/io/local_data_store.py
TifProcessor
¶
A class to handle tif data processing, supporting single-band, RGB, RGBA, and multi-band data.
Source code in gigaspatial/processing/tif_processor.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
|
bounds
property
¶
Get the bounds of the TIF file
count: int
property
¶
Get the band count from the TIF file
crs
property
¶
Get the coordinate reference system from the TIF file
nodata: int
property
¶
Get the value representing no data in the rasters
resolution: Tuple[float, float]
property
¶
Get the x and y resolution (pixel width and height or pixel size) from the TIF file
tabular: pd.DataFrame
property
¶
Get the data from the TIF file
transform
property
¶
Get the transform from the TIF file
x_transform: float
property
¶
Get the x transform from the TIF file
y_transform: float
property
¶
Get the y transform from the TIF file
__post_init__()
¶
Validate inputs and set up logging.
Source code in gigaspatial/processing/tif_processor.py
get_zoned_geodataframe()
¶
Convert the processed TIF data into a GeoDataFrame, where each row represents a pixel zone. Each zone is defined by its bounding box, based on pixel resolution and coordinates.
Source code in gigaspatial/processing/tif_processor.py
open_dataset()
¶
Context manager for accessing the dataset
Source code in gigaspatial/processing/tif_processor.py
sample_by_polygons(polygon_list, stat='mean')
¶
Sample raster values within each polygon of a GeoDataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
polygon_list | List[Union[Polygon, MultiPolygon]] | List of polygon geometries (can include MultiPolygons). | required |
stat | str | Aggregation statistic to compute within each polygon. Options: "mean", "median", "sum", "min", "max". | 'mean' |
Source code in gigaspatial/processing/tif_processor.py
add_area_in_meters(gdf, area_column_name='area_in_meters')
¶
Calculate the area of (Multi)Polygon geometries in square meters and add it as a new column.
Parameters:¶
gdf : geopandas.GeoDataFrame GeoDataFrame containing (Multi)Polygon geometries. area_column_name : str, optional Name of the new column to store the area values. Default is "area_m2".
Returns:¶
geopandas.GeoDataFrame The input GeoDataFrame with an additional column for the area in square meters.
Raises:¶
ValueError If the input GeoDataFrame does not contain (Multi)Polygon geometries.
Source code in gigaspatial/processing/geo.py
add_spatial_jitter(df, columns=['latitude', 'longitude'], amount=0.0001, seed=None, copy=True)
¶
Add random jitter to duplicated geographic coordinates to create slight separation between overlapping points.
Parameters:¶
df : pandas.DataFrame DataFrame containing geographic coordinates. columns : list of str, optional Column names containing coordinates to jitter. Default is ['latitude', 'longitude']. amount : float or dict, optional Amount of jitter to add. If float, same amount used for all columns. If dict, specify amount per column, e.g., {'lat': 0.0001, 'lon': 0.0002}. Default is 0.0001 (approximately 11 meters at the equator). seed : int, optional Random seed for reproducibility. Default is None. copy : bool, optional Whether to create a copy of the input DataFrame. Default is True.
Returns:¶
pandas.DataFrame DataFrame with jittered coordinates for previously duplicated points.
Raises:¶
ValueError If columns don't exist or jitter amount is invalid. TypeError If input types are incorrect.
Source code in gigaspatial/processing/geo.py
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
|
aggregate_points_to_zones(points, zones, value_columns=None, aggregation='count', point_zone_predicate='within', zone_id_column='zone_id', output_suffix='', drop_geometry=False)
¶
Aggregate point data to zones with flexible aggregation methods.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
points | Union[DataFrame, GeoDataFrame] | Point data to aggregate | required |
zones | GeoDataFrame | Zones to aggregate points to | required |
value_columns | Optional[Union[str, List[str]]] | Column(s) containing values to aggregate If None, only counts will be performed. | None |
aggregation | Union[str, Dict[str, str]] | Aggregation method(s) to use: - Single string: Use same method for all columns ("count", "mean", "sum", "min", "max") - Dict: Map column names to aggregation methods | 'count' |
point_zone_predicate | str | Spatial predicate for point-to-zone relationship Options: "within", "intersects", "contains" | 'within' |
zone_id_column | str | Column in zones containing zone identifiers | 'zone_id' |
output_suffix | str | Suffix to add to output column names | '' |
drop_geometry | bool | Whether to drop the geometry column from output | False |
Returns:
Type | Description |
---|---|
GeoDataFrame | gpd.GeoDataFrame: Zones with aggregated point values |
Example
poi_counts = aggregate_points_to_zones(pois, zones, aggregation="count") poi_value_mean = aggregate_points_to_zones( ... pois, zones, value_columns="score", aggregation="mean" ... ) poi_multiple = aggregate_points_to_zones( ... pois, zones, ... value_columns=["score", "visits"], ... aggregation={"score": "mean", "visits": "sum"} ... )
Source code in gigaspatial/processing/geo.py
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
|
aggregate_polygons_to_zones(polygons, zones, value_columns, aggregation='sum', area_weighted=True, zone_id_column='zone_id', output_suffix='', drop_geometry=False)
¶
Aggregate polygon data to zones with area-weighted values.
This function maps polygon data to zones, weighting values by the fractional area of overlap between polygons and zones.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
polygons | Union[DataFrame, GeoDataFrame] | Polygon data to aggregate | required |
zones | GeoDataFrame | Zones to aggregate polygons to | required |
value_columns | Union[str, List[str]] | Column(s) containing values to aggregate | required |
aggregation | Union[str, Dict[str, str]] | Aggregation method(s) to use: - Single string: Use same method for all columns ("sum", "mean", "max", etc.) - Dict: Map column names to aggregation methods | 'sum' |
area_weighted | bool | Whether to weight values by fractional area overlap If False, values are not weighted before aggregation | True |
zone_id_column | str | Column in zones containing zone identifiers | 'zone_id' |
output_suffix | str | Suffix to add to output column names | '' |
drop_geometry | bool | Whether to drop the geometry column from output | False |
Returns:
Type | Description |
---|---|
GeoDataFrame | gpd.GeoDataFrame: Zones with aggregated polygon values |
Example
landuse_stats = aggregate_polygons_to_zones( ... landuse_polygons, ... grid_zones, ... value_columns=["area", "population"], ... aggregation="sum" ... )
Source code in gigaspatial/processing/geo.py
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 |
|
annotate_with_admin_regions(gdf, country_code, data_store=None, admin_id_column_suffix='_giga')
¶
Annotate a GeoDataFrame with administrative region information.
Performs a spatial join between the input points and administrative boundaries at levels 1 and 2, resolving conflicts when points intersect multiple admin regions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdf | GeoDataFrame | GeoDataFrame containing points to annotate | required |
country_code | str | Country code for administrative boundaries | required |
data_store | Optional[DataStore] | Optional DataStore for loading admin boundary data | None |
Returns:
Type | Description |
---|---|
GeoDataFrame | GeoDataFrame with added administrative region columns |
Source code in gigaspatial/processing/geo.py
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 |
|
assign_id(df, required_columns, id_column='id')
¶
Generate IDs for any entity type in a pandas DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df | DataFrame | Input DataFrame containing entity data | required |
required_columns | List[str] | List of column names required for ID generation | required |
id_column | str | Name for the id column that will be generated | 'id' |
Returns:
Type | Description |
---|---|
DataFrame | pd.DataFrame: DataFrame with generated id column |
Source code in gigaspatial/processing/utils.py
buffer_geodataframe(gdf, buffer_distance_meters, cap_style='round', copy=True)
¶
Buffers a GeoDataFrame with a given buffer distance in meters.
- gdf : geopandas.GeoDataFrame The GeoDataFrame to be buffered.
- buffer_distance_meters : float The buffer distance in meters.
- cap_style : str, optional The style of caps. round, flat, square. Default is round.
- geopandas.GeoDataFrame The buffered GeoDataFrame.
Source code in gigaspatial/processing/geo.py
calculate_pixels_at_location(gdf, resolution, bbox_size=300, crs='EPSG:3857')
¶
Calculates the number of pixels required to cover a given bounding box around a geographic coordinate, given a resolution in meters per pixel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdf | a geodataframe with Point geometries that are geographic coordinates | required | |
resolution | float | Desired resolution (meters per pixel). | required |
bbox_size | float | Bounding box size in meters (default 300m x 300m). | 300 |
crs | str | Target projection (default is EPSG:3857). | 'EPSG:3857' |
Returns:
Name | Type | Description |
---|---|---|
int | Number of pixels per side (width and height). |
Source code in gigaspatial/processing/sat_images.py
convert_to_geodataframe(data, lat_col=None, lon_col=None, crs='EPSG:4326')
¶
Convert a pandas DataFrame to a GeoDataFrame, either from latitude/longitude columns or from a WKT geometry column.
Parameters:¶
data : pandas.DataFrame Input DataFrame containing either lat/lon columns or a geometry column. lat_col : str, optional Name of the latitude column. Default is 'lat'. lon_col : str, optional Name of the longitude column. Default is 'lon'. crs : str or pyproj.CRS, optional Coordinate Reference System of the geometry data. Default is 'EPSG:4326'.
Returns:¶
geopandas.GeoDataFrame A GeoDataFrame containing the input data with a geometry column.
Raises:¶
TypeError If input is not a pandas DataFrame. ValueError If required columns are missing or contain invalid data.
Source code in gigaspatial/processing/geo.py
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
|
detect_coordinate_columns(data, lat_keywords=None, lon_keywords=None, case_sensitive=False)
¶
Detect latitude and longitude columns in a DataFrame using keyword matching.
Parameters:¶
data : pandas.DataFrame DataFrame to search for coordinate columns. lat_keywords : list of str, optional Keywords for identifying latitude columns. If None, uses default keywords. lon_keywords : list of str, optional Keywords for identifying longitude columns. If None, uses default keywords. case_sensitive : bool, optional Whether to perform case-sensitive matching. Default is False.
Returns:¶
tuple[str, str] Names of detected (latitude, longitude) columns.
Raises:¶
ValueError If no unique pair of latitude/longitude columns can be found. TypeError If input data is not a pandas DataFrame.
Source code in gigaspatial/processing/geo.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
get_centroids(gdf)
¶
Calculate the centroids of a (Multi)Polygon GeoDataFrame.
Parameters:¶
gdf : geopandas.GeoDataFrame GeoDataFrame containing (Multi)Polygon geometries.
Returns:¶
geopandas.GeoDataFrame A new GeoDataFrame with Point geometries representing the centroids.
Raises:¶
ValueError If the input GeoDataFrame does not contain (Multi)Polygon geometries.
Source code in gigaspatial/processing/geo.py
map_points_within_polygons(base_points_gdf, polygon_gdf)
¶
Maps whether each point in base_points_gdf
is within any polygon in polygon_gdf
.
Parameters:¶
base_points_gdf : geopandas.GeoDataFrame GeoDataFrame containing point geometries to check. polygon_gdf : geopandas.GeoDataFrame GeoDataFrame containing polygon geometries.
Returns:¶
geopandas.GeoDataFrame The base_points_gdf
with an additional column is_within
(True/False).
Raises:¶
ValueError If the geometries in either GeoDataFrame are invalid or not of the expected type.
Source code in gigaspatial/processing/geo.py
sample_multiple_tifs_by_coordinates(tif_processors, coordinate_list)
¶
Sample raster values from multiple TIFF files for given coordinates.
Parameters: - tif_processors: List of TifProcessor instances. - coordinate_list: List of (x, y) coordinates.
Returns: - A NumPy array of sampled values, taking the first non-nodata value encountered.
Source code in gigaspatial/processing/tif_processor.py
sample_multiple_tifs_by_polygons(tif_processors, polygon_list, stat='mean')
¶
Sample raster values from multiple TIFF files for polygons in a list and join the results.
Parameters: - tif_processors: List of TifProcessor instances. - polygon_list: List of polygon geometries (can include MultiPolygons). - stat: Aggregation statistic to compute within each polygon (mean, median, sum, min, max).
Returns: - A NumPy array of sampled values, taking the first non-nodata value encountered.
Source code in gigaspatial/processing/tif_processor.py
simplify_geometries(gdf, tolerance=0.01, preserve_topology=True, geometry_column='geometry')
¶
Simplify geometries in a GeoDataFrame to reduce file size and improve visualization performance.
Parameters¶
gdf : geopandas.GeoDataFrame GeoDataFrame containing geometries to simplify. tolerance : float, optional Tolerance for simplification. Larger values simplify more but reduce detail (default is 0.01). preserve_topology : bool, optional Whether to preserve topology while simplifying. Preserving topology prevents invalid geometries (default is True). geometry_column : str, optional Name of the column containing geometries (default is "geometry").
Returns¶
geopandas.GeoDataFrame A new GeoDataFrame with simplified geometries.
Raises¶
ValueError If the specified geometry column does not exist or contains invalid geometries. TypeError If the geometry column does not contain valid geometries.
Examples¶
Simplify geometries in a GeoDataFrame:
simplified_gdf = simplify_geometries(gdf, tolerance=0.05)
Source code in gigaspatial/processing/geo.py
geo
¶
add_area_in_meters(gdf, area_column_name='area_in_meters')
¶
Calculate the area of (Multi)Polygon geometries in square meters and add it as a new column.
Parameters:¶
gdf : geopandas.GeoDataFrame GeoDataFrame containing (Multi)Polygon geometries. area_column_name : str, optional Name of the new column to store the area values. Default is "area_m2".
Returns:¶
geopandas.GeoDataFrame The input GeoDataFrame with an additional column for the area in square meters.
Raises:¶
ValueError If the input GeoDataFrame does not contain (Multi)Polygon geometries.
Source code in gigaspatial/processing/geo.py
add_spatial_jitter(df, columns=['latitude', 'longitude'], amount=0.0001, seed=None, copy=True)
¶
Add random jitter to duplicated geographic coordinates to create slight separation between overlapping points.
Parameters:¶
df : pandas.DataFrame DataFrame containing geographic coordinates. columns : list of str, optional Column names containing coordinates to jitter. Default is ['latitude', 'longitude']. amount : float or dict, optional Amount of jitter to add. If float, same amount used for all columns. If dict, specify amount per column, e.g., {'lat': 0.0001, 'lon': 0.0002}. Default is 0.0001 (approximately 11 meters at the equator). seed : int, optional Random seed for reproducibility. Default is None. copy : bool, optional Whether to create a copy of the input DataFrame. Default is True.
Returns:¶
pandas.DataFrame DataFrame with jittered coordinates for previously duplicated points.
Raises:¶
ValueError If columns don't exist or jitter amount is invalid. TypeError If input types are incorrect.
Source code in gigaspatial/processing/geo.py
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
|
aggregate_points_to_zones(points, zones, value_columns=None, aggregation='count', point_zone_predicate='within', zone_id_column='zone_id', output_suffix='', drop_geometry=False)
¶
Aggregate point data to zones with flexible aggregation methods.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
points | Union[DataFrame, GeoDataFrame] | Point data to aggregate | required |
zones | GeoDataFrame | Zones to aggregate points to | required |
value_columns | Optional[Union[str, List[str]]] | Column(s) containing values to aggregate If None, only counts will be performed. | None |
aggregation | Union[str, Dict[str, str]] | Aggregation method(s) to use: - Single string: Use same method for all columns ("count", "mean", "sum", "min", "max") - Dict: Map column names to aggregation methods | 'count' |
point_zone_predicate | str | Spatial predicate for point-to-zone relationship Options: "within", "intersects", "contains" | 'within' |
zone_id_column | str | Column in zones containing zone identifiers | 'zone_id' |
output_suffix | str | Suffix to add to output column names | '' |
drop_geometry | bool | Whether to drop the geometry column from output | False |
Returns:
Type | Description |
---|---|
GeoDataFrame | gpd.GeoDataFrame: Zones with aggregated point values |
Example
poi_counts = aggregate_points_to_zones(pois, zones, aggregation="count") poi_value_mean = aggregate_points_to_zones( ... pois, zones, value_columns="score", aggregation="mean" ... ) poi_multiple = aggregate_points_to_zones( ... pois, zones, ... value_columns=["score", "visits"], ... aggregation={"score": "mean", "visits": "sum"} ... )
Source code in gigaspatial/processing/geo.py
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
|
aggregate_polygons_to_zones(polygons, zones, value_columns, aggregation='sum', area_weighted=True, zone_id_column='zone_id', output_suffix='', drop_geometry=False)
¶
Aggregate polygon data to zones with area-weighted values.
This function maps polygon data to zones, weighting values by the fractional area of overlap between polygons and zones.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
polygons | Union[DataFrame, GeoDataFrame] | Polygon data to aggregate | required |
zones | GeoDataFrame | Zones to aggregate polygons to | required |
value_columns | Union[str, List[str]] | Column(s) containing values to aggregate | required |
aggregation | Union[str, Dict[str, str]] | Aggregation method(s) to use: - Single string: Use same method for all columns ("sum", "mean", "max", etc.) - Dict: Map column names to aggregation methods | 'sum' |
area_weighted | bool | Whether to weight values by fractional area overlap If False, values are not weighted before aggregation | True |
zone_id_column | str | Column in zones containing zone identifiers | 'zone_id' |
output_suffix | str | Suffix to add to output column names | '' |
drop_geometry | bool | Whether to drop the geometry column from output | False |
Returns:
Type | Description |
---|---|
GeoDataFrame | gpd.GeoDataFrame: Zones with aggregated polygon values |
Example
landuse_stats = aggregate_polygons_to_zones( ... landuse_polygons, ... grid_zones, ... value_columns=["area", "population"], ... aggregation="sum" ... )
Source code in gigaspatial/processing/geo.py
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 |
|
annotate_with_admin_regions(gdf, country_code, data_store=None, admin_id_column_suffix='_giga')
¶
Annotate a GeoDataFrame with administrative region information.
Performs a spatial join between the input points and administrative boundaries at levels 1 and 2, resolving conflicts when points intersect multiple admin regions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdf | GeoDataFrame | GeoDataFrame containing points to annotate | required |
country_code | str | Country code for administrative boundaries | required |
data_store | Optional[DataStore] | Optional DataStore for loading admin boundary data | None |
Returns:
Type | Description |
---|---|
GeoDataFrame | GeoDataFrame with added administrative region columns |
Source code in gigaspatial/processing/geo.py
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 |
|
buffer_geodataframe(gdf, buffer_distance_meters, cap_style='round', copy=True)
¶
Buffers a GeoDataFrame with a given buffer distance in meters.
- gdf : geopandas.GeoDataFrame The GeoDataFrame to be buffered.
- buffer_distance_meters : float The buffer distance in meters.
- cap_style : str, optional The style of caps. round, flat, square. Default is round.
- geopandas.GeoDataFrame The buffered GeoDataFrame.
Source code in gigaspatial/processing/geo.py
convert_to_geodataframe(data, lat_col=None, lon_col=None, crs='EPSG:4326')
¶
Convert a pandas DataFrame to a GeoDataFrame, either from latitude/longitude columns or from a WKT geometry column.
Parameters:¶
data : pandas.DataFrame Input DataFrame containing either lat/lon columns or a geometry column. lat_col : str, optional Name of the latitude column. Default is 'lat'. lon_col : str, optional Name of the longitude column. Default is 'lon'. crs : str or pyproj.CRS, optional Coordinate Reference System of the geometry data. Default is 'EPSG:4326'.
Returns:¶
geopandas.GeoDataFrame A GeoDataFrame containing the input data with a geometry column.
Raises:¶
TypeError If input is not a pandas DataFrame. ValueError If required columns are missing or contain invalid data.
Source code in gigaspatial/processing/geo.py
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
|
detect_coordinate_columns(data, lat_keywords=None, lon_keywords=None, case_sensitive=False)
¶
Detect latitude and longitude columns in a DataFrame using keyword matching.
Parameters:¶
data : pandas.DataFrame DataFrame to search for coordinate columns. lat_keywords : list of str, optional Keywords for identifying latitude columns. If None, uses default keywords. lon_keywords : list of str, optional Keywords for identifying longitude columns. If None, uses default keywords. case_sensitive : bool, optional Whether to perform case-sensitive matching. Default is False.
Returns:¶
tuple[str, str] Names of detected (latitude, longitude) columns.
Raises:¶
ValueError If no unique pair of latitude/longitude columns can be found. TypeError If input data is not a pandas DataFrame.
Source code in gigaspatial/processing/geo.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
|
get_centroids(gdf)
¶
Calculate the centroids of a (Multi)Polygon GeoDataFrame.
Parameters:¶
gdf : geopandas.GeoDataFrame GeoDataFrame containing (Multi)Polygon geometries.
Returns:¶
geopandas.GeoDataFrame A new GeoDataFrame with Point geometries representing the centroids.
Raises:¶
ValueError If the input GeoDataFrame does not contain (Multi)Polygon geometries.
Source code in gigaspatial/processing/geo.py
map_points_within_polygons(base_points_gdf, polygon_gdf)
¶
Maps whether each point in base_points_gdf
is within any polygon in polygon_gdf
.
Parameters:¶
base_points_gdf : geopandas.GeoDataFrame GeoDataFrame containing point geometries to check. polygon_gdf : geopandas.GeoDataFrame GeoDataFrame containing polygon geometries.
Returns:¶
geopandas.GeoDataFrame The base_points_gdf
with an additional column is_within
(True/False).
Raises:¶
ValueError If the geometries in either GeoDataFrame are invalid or not of the expected type.
Source code in gigaspatial/processing/geo.py
simplify_geometries(gdf, tolerance=0.01, preserve_topology=True, geometry_column='geometry')
¶
Simplify geometries in a GeoDataFrame to reduce file size and improve visualization performance.
Parameters¶
gdf : geopandas.GeoDataFrame GeoDataFrame containing geometries to simplify. tolerance : float, optional Tolerance for simplification. Larger values simplify more but reduce detail (default is 0.01). preserve_topology : bool, optional Whether to preserve topology while simplifying. Preserving topology prevents invalid geometries (default is True). geometry_column : str, optional Name of the column containing geometries (default is "geometry").
Returns¶
geopandas.GeoDataFrame A new GeoDataFrame with simplified geometries.
Raises¶
ValueError If the specified geometry column does not exist or contains invalid geometries. TypeError If the geometry column does not contain valid geometries.
Examples¶
Simplify geometries in a GeoDataFrame:
simplified_gdf = simplify_geometries(gdf, tolerance=0.05)
Source code in gigaspatial/processing/geo.py
sat_images
¶
calculate_pixels_at_location(gdf, resolution, bbox_size=300, crs='EPSG:3857')
¶
Calculates the number of pixels required to cover a given bounding box around a geographic coordinate, given a resolution in meters per pixel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdf | a geodataframe with Point geometries that are geographic coordinates | required | |
resolution | float | Desired resolution (meters per pixel). | required |
bbox_size | float | Bounding box size in meters (default 300m x 300m). | 300 |
crs | str | Target projection (default is EPSG:3857). | 'EPSG:3857' |
Returns:
Name | Type | Description |
---|---|---|
int | Number of pixels per side (width and height). |
Source code in gigaspatial/processing/sat_images.py
tif_processor
¶
TifProcessor
¶
A class to handle tif data processing, supporting single-band, RGB, RGBA, and multi-band data.
Source code in gigaspatial/processing/tif_processor.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
|
bounds
property
¶
Get the bounds of the TIF file
count: int
property
¶
Get the band count from the TIF file
crs
property
¶
Get the coordinate reference system from the TIF file
nodata: int
property
¶
Get the value representing no data in the rasters
resolution: Tuple[float, float]
property
¶
Get the x and y resolution (pixel width and height or pixel size) from the TIF file
tabular: pd.DataFrame
property
¶
Get the data from the TIF file
transform
property
¶
Get the transform from the TIF file
x_transform: float
property
¶
Get the x transform from the TIF file
y_transform: float
property
¶
Get the y transform from the TIF file
__post_init__()
¶
Validate inputs and set up logging.
Source code in gigaspatial/processing/tif_processor.py
get_zoned_geodataframe()
¶
Convert the processed TIF data into a GeoDataFrame, where each row represents a pixel zone. Each zone is defined by its bounding box, based on pixel resolution and coordinates.
Source code in gigaspatial/processing/tif_processor.py
open_dataset()
¶
Context manager for accessing the dataset
Source code in gigaspatial/processing/tif_processor.py
sample_by_polygons(polygon_list, stat='mean')
¶
Sample raster values within each polygon of a GeoDataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
polygon_list | List[Union[Polygon, MultiPolygon]] | List of polygon geometries (can include MultiPolygons). | required |
stat | str | Aggregation statistic to compute within each polygon. Options: "mean", "median", "sum", "min", "max". | 'mean' |
Source code in gigaspatial/processing/tif_processor.py
sample_multiple_tifs_by_coordinates(tif_processors, coordinate_list)
¶
Sample raster values from multiple TIFF files for given coordinates.
Parameters: - tif_processors: List of TifProcessor instances. - coordinate_list: List of (x, y) coordinates.
Returns: - A NumPy array of sampled values, taking the first non-nodata value encountered.
Source code in gigaspatial/processing/tif_processor.py
sample_multiple_tifs_by_polygons(tif_processors, polygon_list, stat='mean')
¶
Sample raster values from multiple TIFF files for polygons in a list and join the results.
Parameters: - tif_processors: List of TifProcessor instances. - polygon_list: List of polygon geometries (can include MultiPolygons). - stat: Aggregation statistic to compute within each polygon (mean, median, sum, min, max).
Returns: - A NumPy array of sampled values, taking the first non-nodata value encountered.
Source code in gigaspatial/processing/tif_processor.py
utils
¶
assign_id(df, required_columns, id_column='id')
¶
Generate IDs for any entity type in a pandas DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df | DataFrame | Input DataFrame containing entity data | required |
required_columns | List[str] | List of column names required for ID generation | required |
id_column | str | Name for the id column that will be generated | 'id' |
Returns:
Type | Description |
---|---|
DataFrame | pd.DataFrame: DataFrame with generated id column |