

Statement
July 2024

This assessment was completed and reviewed with the DHIS2 team in April and May
2024. Since then, the DHIS2 team has been working on implementing the
recommendations from this assessment along with community feedback. Key security
issues have been addressed and we await a formal update from the DHIS2 team.

DHIS2 Evaluation Report

Evaluation Report

Performed by Guardian Project
Final Report, April 2024
Solution Name and Version: DHIS2 v40.0 and Android v2.8/ May 2023

The evaluation of the DHIS2 solution by Guardian Project in 2024 is now a publicly available
document under CC-BY copyright.

About Guardian Project

With 15 years of experience in the Internet Freedom space, Guardian Project is dedicated to
building apps and technologies prioritising the safety and protection of those we work with. Our
core values include security, privacy, and transparency, reflected in all our developments.

Relevant Expertise
Our work at Oliver+Coady, inc, via Guardian Project, has always been focused on the human
rights and humanitarian context, aiming to bend technology to better serve people and
communities whose data and digital communications are at higher risk of being exploited and
used against them. Over the last 15 years, we have provided security and privacy-focused
software architecture, development, and operational deployment services across the human
rights and humanitarian technology space. We have experience managing complex multi-year,
multi-million dollar technical projects with many stakeholders, and hundreds of thousands to
millions of end-users.

DHIS2 Evaluation Report

https://creativecommons.org/licenses/by/4.0/

For over a decade, we have also been heavily involved in open-source software communities, in
particular those focused on privacy-enhancing technology, security-by-design and the
minimization of tracking by third-parties. We have worked within projects that are part of Debian,
Tor Project, Mozilla, Android, and more. We also lead and nurture our own open-source projects
and communities, such as Clean Insights, F-Droid, and ProofMode.

Our DevOps team has worked to define a best-of-breed approach to supporting development
and deployment of secure and privacy services protecting high-risk data. We have experience
deploying on Amazon Web Services, which is ISO certified for Cloud Security and Data
Protection, Microsoft Azure Cloud, Fastly, and other independent hosting providers. For network
security purposes, we use private virtual intranets and web application firewalls to secure
access to our services. When possible, all content stored is encrypted using cryptographic keys
generated using end-to-end encryption protocols, and that are only resident in the user’s device
or browser. We also take a privacy-preserving approach to measurement - in most cases, no full
IP addresses are logged by our servers or analytics services, only country level information.
Access logs are stored for the minimal amount of time necessary to operate the service, and are
not shared with any third-party. All internal and external communications within our team are
encrypted (TLS, VPN, SSH, OpenPGP, Signal, Matrix). All of our services require two-factor
authentication access with hardware token, from authorised devices.

Implementation of regular security audits and updates ensure that security standards are
upheld. In addition to our own internal auditing and manual and automated testing, we use
reputable third-party penetration “Red Team” testing teams to test the security of our services
on an annual basis or after major releases.

Introduction

This is the Guardian Project’s latest iteration of the solution provider evaluation report for DHIS2.
This work is being done by the request of the Digital Center of Excellence (DCoE) at UNICEF.

Table of Contents

Glossary of Terms 3
Evaluation Summary 4

Executive Summary 4
Summary of the DHIS2 Solution 6
Elements of the Solution 9

Some current capabilities of the solution 11

DHIS2 Evaluation Report

Threat and Risk Assessment 12
Initial Assessment Results 14

Initial Thoughts 14
General Impressions 14
Key Team Members and Roles 15
Summary of Initial Interactions 15
Concerns and Blockers 15

Questions to investigate further 15
Review of Assets 16

Source Code Security Audit 18
Processes and Tools 18

Research and document the complete “Software Bill of Materials” (SBOM) 18
Open-Source Software (OSS) vulnerability scanning 19
Static application security testing (SAST) scanning 19

High-level overview 19
Summary of test environment setup, steps taken to complete analysis 20
Summary of communication with vendor related to disclosures and direct feedback 20
Status of any mitigations, patches, updated releases 20

Outcomes 20
Application Architecture Audit 31
High-level overview 31

Summary of test environment setup, steps taken to complete analysis 32
Summary of communication with vendor related to disclosures and direct feedback 32

Outcomes 32
Overview of the structure of the application 32
Evaluation of Configurability 33
Evaluation of Extensibility 35
Evaluation of maintainability and performance at scale 39

Penetration Testing Audit 39
Summary of test environment setup 39
Details of process, setup, tools utilised 39

Outcomes 40
Feedback 49

Summary of communication with vendor related to disclosures and direct feedback 49
Status of any mitigations, patches, updated releases 49

DevSecOps Analysis 50
Summary of test environment setup, steps taken to complete analysis 50
Test Environment Deployment Overview 51
Outcomes 51

DHIS2 Evaluation Report

Operation best practices 51
Operations Management Review 53
Production Deployment Guidance 55

Secrets Management 56
Final Report and Recommendations 56

Overall Findings 56
Actionable Recommendations 59
Closing 61

Appendix 62

Glossary of Terms
Listing of combined terminology from both general CRVS definition space, along with vendor and
audit/evaluation specific terminology.

● Civil Registration and Vital Statistics (CRVS): A well-functioning civil registration and vital
statistics (CRVS) system registers all births and deaths, issues birth and death
certificates, and compiles and disseminates vital statistics, including cause of death
information. It may also record marriages and divorces.

● Software Bill of Materials (SBOM): list of all the open source and third-party components
present in a codebase. An SBOM also lists the licenses that govern those components,
the versions of the components used in the codebase, and their patch status, which
allows security teams to quickly identify any associated security or license risks.

● Digital Public Good (DPGs): are public goods in the form of software, data sets, AI
models, standards or content that are generally free cultural works and contribute to
sustainable national and international digital development. Several international
agencies, including UNICEF and UNDP, are exploring DPGs as a possible solution to
address the issue of digital inclusion, particularly for children in emerging economies.

● Penetration Test (Pen Test): an authorised simulated cyberattack on a computer system,
performed to evaluate the security of the system. The test is performed to identify
weaknesses (also referred to as vulnerabilities), including the potential for unauthorised
parties to gain access to the system's features and data, as well as strengths, enabling a
full risk assessment to be completed.

● DevSecOps (Development, Security, Operations): a practice in application security that
involves introducing security earlier in the software development life cycle. It also
expands the collaboration between development and operations teams to integrate
security teams in the software delivery cycle and workflow of continuous integration and
continuous delivery (CI/CD).

● Health Management Information System (HMIS): An information system consisting of
computer hardware and software, procedures, and processes that are specifically
designed and implemented to store, maintain, collect, process, represent, manage, and

DHIS2 Evaluation Report

transmit a patient’s electronic medical record (EMR) and additional information specific
to the health care domain.

● Electronic Immunization Registry (EIR): digital tool that helps collect, store and digital
track an individual’s immunisation history.

● Application Programming Interface (API): is a way for two or more computer programs
to communicate with each other. It simplifies software development by enabling
applications to exchange data and functionality easily and more securely by providing a
set of definitions and protocols to build and integrate application software.

● Content-Security-Policy (CSP) headers: the name of a HTTP response header that
modern browsers use to enhance the security of the document (or web page). The
Content-Security-Policy header allows you to restrict which resources (such as
JavaScript, CSS, Images, etc.) can be loaded, and the URLs that they can be loaded from.

Evaluation Summary

Executive Summary
The following evaluation of DHIS2 was conducted by Guardian Project over the course of Spring,
Fall and Winter 2023. The evaluation was designed to provide a comprehensive review of the
DHIS2 solution through the following cous:

● Initial Assessment of Solution, Assets, and Documentation
○ Meet with and interview the product team, receive a typical walkthrough

demonstration of the system, gather all available documentation, reports, source
code, tools, and complete an overall review of the “fitness” of the solution and
readiness for proceeding through the rest of the audit process

● Source Code Security Audit
○ Uncover flaws in the application (bugs, security weaknesses, extensibility,

maintainability...), and evaluate the readiness of the source code for being
enhanced by a third party

● Application Architecture Audit
○ Review the structure of the application, on how the different components,

database, APIs, and third-party libraries interact within the code under the lens of
maintainability, performance at scale, re-usability, flexibility, cyber security, and
data privacy.

● Penetration Testing Audit
○ Evaluate the holistic approach in terms of cyber security, through active and

passive security scanning of vulnerabilities, manual penetration testing, security
policies analysis, Analysis of history of public vulnerabilities, analysis of security
guidelines/documentation (including resilience and recovery recommendations),
and more.

● DevSecOps Analysis

DHIS2 Evaluation Report

○ Software development operation best practices and from the operations
management from a system administration perspective, and provide guidance
for keeping in production a solution in a stable, updated, and secure perspective.

Overall, we find the DHIS2 solution (District Health Information Software), to be stable and ready
to implement.

It is a free, open-source, generic software platform for reporting, collecting, analysing and
dissemination of individual-level and aggregated data. Although, keep in mind, the DHIS2 is not
a purpose-built CRVS solution, but rather a software that can integrate with CRVS systems or
potentially be extended to include CRVS-related features. Interoperability tends to be expensive
to implement, both in terms of initial integration work and long term operation and maintenance.
At this stage in the evaluation we will continue to consider what additional costs are associated
with combining DHIS2 with a CRVS system.

Provided as a global public good (DPG) to help support sustainable development goals, DHIS2
comes with a suite of visualisation and analysis tools which makes it capable at linking data for
reporting and tracking purposes. It can be hosted locally on a device (mobile, laptop, desktop or
local server) or in the cloud. It is most commonly used for health data, but integrates and is
interoperable with a number of various softwares and tools using the DHIS2 Application
Programming Interface (API). It is currently deployed in 75 low- and middle-income countries
and over 100 NGOs have implemented the software. Often deployed by a country's Ministries of
Health (government department), DHIS2 fits many contexts and use cases, such as logistics,
education, COVID-19 vaccine tracking, agriculture projects, e-governance, food and nutrition and
more.

To conduct the DHIS2 evaluation we read publicly available documentation, visited their website,
attended virtual conferences and leveraged available resources on YouTube and their
community resources page. We also started a local cluster for testing using the DHIS2
command line tool (https://cli.dhis2.nu/#/getting-started) and used that tool to create a test
application to extend the core functionality. We decided to deploy our instance and tested
vulnerabilities and dependencies, created a SBOM for the codebase, audited the architecture
deployed software in AWS and ran multiple variations of vulnerability scans and penetration
tests. We had some ongoing conversations with the DHIS2 team, but found it to be a busy time
of year for them, so scheduling additional calls or walkthroughs proved to be difficult.
Nevertheless, the team has been responsive on Slack and directly within this evaluation
document to provide feedback and clarity. They are an engaged and community-driven
organisation.

Summary of the DHIS2 Solution

DHIS2 Evaluation Report

https://dhis2.org/
https://cli.dhis2.nu/#/getting-started

Originally developed in 1994, for three health districts in Cape Town, South Africa, as a
collaborative research project, DHIS2 has become the world’s largest health management
information system (HMIS). The project is supported by donors who provide stable and regular
funding enabling DHIS2 to explore new technologies, develop networks of experts and expand
while providing a sustainable product. DHIS2 is free to download, with no licensing fees, and is
adaptable to meet local demands and new challenges.

Every individual instance of DHIS2 software and data contents are locally managed and owned.
The system is designed to aid the capture of data linked to any level in an organisational
hierarchy at any data collection frequency, including event data (patient satisfaction surveys,
disease outbreaks) aggregate data (population estimates, routine health facility data, staffing,
infrastructure), and individual-level longitudinal data (patient treatment and follow-up,
vaccination records, lab sample testing). DHIS2 supports collaboration, sharing of data,
commenting and interpretation. Custom applications, third-party software and external data
sources can extend the reach of data collection and functionality. Localization and translation
support are available for the web-based platform in French, Spanish, Hindi, Chinese, Portuguese,
Vietnamese and Norwegian.

DHIS2 is developed and maintained by the HISP Centre at the University of Oslo (UiO), Norway,
and is supported by a coalition of software providers and international investors. DHIS2 is a
global solution with a global network of local and regional partners, experts and staff. Their core
team is organised by function. The core team includes research, training and communication,
implementation, development and project support. They collaborate across teams to ensure
their work addresses real-world needs. The DHIS2 open-source project also relies on their
community network of contributors to help ensure they are addressing real-world use cases and
fitting user needs. Contributors can actively contribute source code, custom web applications
and software suggestions. Resources for developers to contribute can be found in their
developer portal on the DHIS2 website. Because DHIS2 can fit various models of use,
documentation around how to implement, use, manage and make it most effective for you are
extensive. With digital and in-person support.

DHIS2 is a generic platform which makes it the right solution for many. The team and its
partners have also created customised apps, metadata packages and training support for
various use cases, which help ease the burden of implementation and adoption. Most recently
DHIS2 was deployed to assist in tracking COVID-19 outbreaks and vaccinations. Since many
communities were already utilising DHIS2, integrating the software with COVID-19 specific tools
was easy, creating rapid roll out on a global scale. Various metadata packages exist for the
DHIS2 system which allow countries to use installable templates of DHIS2 rather than starting
from scratch. The metadata packages also allow for implementers to adapt and customise their
DHIS2 solution to fit the needs of their community and its contexts. The use of metadata for
organising and classifying data makes DHIS2 different from many other traditional health
information systems.

DHIS2 Evaluation Report

https://www.mn.uio.no/hisp/english/

For more information on recent COVID-19 Surveillance use cases and other examples of how
DHIS2 is utilised visit https://dhis2.org/in-action/.

DHIS version 1 was publicly released in 1996. This evaluation reviews the latest stable version
of DHIS2 which is v40.0 and Android v2.8, recently released in May 2023. A new backend
version of DHIS2 is released every 6 months with new features and fixes requested from their
global community of users. Continuous app updates and patch releases keeps DHIS2 relevant
and working. All of the source code, releases, and documentation are available via their website
and Github. DHIS2 is open-source software, shared under a BSD 3-Clause licence. BSD 3-Clause
stands for Berkeley Software Distribution, offering flexibility of use and few restrictions. The
licence requires inclusion of the BSD copyright when publishing modified versions of the source
code. All DHIS2 source code is hosted on Github and you can find it at github.com/dhis2. The
server-side code is found in the dhis2-core repository.

The DHIS2 system works as a centralised data warehouse capable of capturing data from a
number of different sources and devices such as an Android app, SMS, direct web entry and
other data sources like spreadsheets or other electronic systems. Broadly the data enters the
system organised into three data models 1) numerical or aggregate data, 2) anonymous
individualised data or events, and 3) individual data with identifiers or tracked over time data.
There is a specific capture and input method for each model of data collected. The forms and
hierarchy are completely customizable based on the user’s needs, however, this separated data
entry approach has the ability to help with accuracy and reliability of data entry.

In 2018, the DHIS2 software team developed the Android Capture App. The DHIS2 Android App
is open source and available for download on the Google Play Store and Github. The code is
available on Github, and the development roadmap and list of known bugs can be accessed on
Jira. The DHIS2 Android Capture App is not a stand-alone application, but a mobile extension of
the DHIS2 core platform. As such, it can be seamlessly integrated into existing DHIS2 systems,
and works natively with aggregate, Tracker, and Event programs. The data syncs automatically
with the user’s central DHIS2 database, allowing for a smooth flow of data from the local level
into a district- or national-level system.

● Android App development: https://dhis2.org/android/development/
● Android SDK: The Android Software Development Kit (SDK)
● Feedback on app release is encouraged via the DHIS2 Community of Practice page

DHIS2 has also produced an SDK that makes it easier for developers to create custom and
ad-hoc apps with seamless integration to the DHIS2 platform. Additionally, the DHIS2 platform
supports SMS-based solutions, which elevates capture capabilities in offline settings. It has
been used for HIV reporting, coordination, tracking mother and child health, education and more.
The DHIS2 website provides detailed videos, images and documentation on implementation
guidelines, use cases and configurations.

DHIS2 Evaluation Report

https://dhis2.org/in-action/
https://en.wikipedia.org/wiki/BSD_licenses
https://github.com/dhis2
https://github.com/dhis2
https://github.com/dhis2/dhis2-core
https://dhis2.org/android/development/
https://dhis2.org/android/sdk/
https://community.dhis2.org/t/dhis2-version-2-39-android-app-2-7-are-released/50308

Some key features of the app include:

● Real-time data entry by any DHIS2 system user, from frontline workers to system
managers

● Full offline functionality with intelligent sync
● Native integration with DHIS2 aggregate, Tracker, and Events programs
● Full Tracker Capture support, including search function for existing records
● Support for the DHIS2 program rules engine, which supports guided data entry and

dynamic form updates for complex workflows
● User-friendly navigation, including options for icon-based data entry
● Automatic visual alignment with web-based DHIS2 programs and forms, plus options for

custom configuration
● Secure and simple login, QR scan for easy server URL configuration
● Map view and easy GPS location capture for data entry
● Create and scan barcodes and QR codes for easy mobile data entry and record

management

The DHIS2 website hosts a plethora of information, documentation on how to implement and
integrate DHIS2 with your own workflow, training academies for further learning and
connections, stories of impact, and use cases. They have a YouTube channel with demos and
training videos on various topics. Videos and details regarding specific topics or new releases
are regularly provided. Overall, the information is organised well, the website is user-friendly and
it is clear they’ve achieved much success with their tool. The team seems engaged in our
evaluation process and willing to help when able. Nonetheless, they are clear where their
boundary lies as a product developer and sustainer vs. an integrator of the system.

Elements of the Solution

The DHIS2 solution is a generic platform which is compatible with other systems and has been
used in many contexts. On the DHIS2 website there’s a number of impact stories sharing about
how governments, NGOs and communities have implemented DHIS2. However, there is only one
use case (that was found publicly published) which explains the interoperability of DHIS2 with a
CRVS system. Since the main objective of this evaluation is to understand CRVS solutions, here
are some highlights from the integration of CRVS with DHIS2 in Rwanda.

Use Case: Rwanda

“Rwanda integrates electronic birth and vaccine registry systems to reduce workload, improve
data quality and help reach unvaccinated and undervaccinated children”

DHIS2 Evaluation Report

https://www.youtube.com/c/Dhis2Org
https://dhis2.org/category/impact-stories/

-Quote from the DHIS2 website, https://dhis2.org/rwanda-crvs-eir-integration/

In 2012, Rwanda became an early adopter of the DHIS2 Electronic Immunization Registry (EIR)
tracker, which tracks a child vaccination history through routine vaccination schedules. Then in
2016, Rwanda launched a strategic eHealth plan to digitise all CRVS data. A web-based
application was developed and debuted in 2020. The application known as the NCI-CRVS
system is meant to help facilitate the collection, storage, and production of data civil status
events. The NCI-CRVS system currently registers births and deaths, including the cause of
death. Birth registration is done at the health facility. The baby’s mother (or the person
accompanying the mother) provides his or her telephone number to the nurse, who enters the
newborn’s information into the CRVS system. Once the registration is complete, a message is
sent to the parent or guardian with the child’s national registration number. They can then
request the child’s digital birth certificate through an online portal, Irembo, where it can be
viewed as many times as needed.

While both the EIR and NCI-CRVS systems were helpful on their own, the lack of integration
between the two systems led to some challenges. These included missing unique identifiers for
some newborns in the EIR, and double data entry for data managers who were required to
capture data for the same child in both the DHIS2 EIR and CRVS systems.

Rwanda integrated the EIR and CRVS systems in 2021 and early 2022. The interoperability
between these systems resulted in a simplified process for registering births and vaccinations
of newborn children:

DHIS2 Evaluation Report

● A baby born at a health facility is notified in CRVS by a data manager and registered by a
Health Center Head or Nursing & Midwife Director

● A unique number National Id Number (NIN) is issued
● The NIN is used in the Irembo portal to request a birth certificate
● A custom script pushes data on all registered newborns from the CRVS system to the

DHIS2 EIR Tracker in the national HMIS system
● During vaccination, a newborn’s recording is accessed and updated in DHIS2 using his or

her NIN
● Reduced workload
● Eliminated double data entry at health facilities for child registration
● Automatic birth notifications in the EIR tracker can be used for follow-up
● Helps identify missing does and “zero dose” individuals
● Improved data quality and accuracy
● Real-time records

Read more in-depth about the Rwanda use case of DHIS2 with CRVS at
https://dhis2.org/rwanda-crvs-eir-integration/

● For a full list of impact stories and use cases visit their website:
https://dhis2.org/category/impact-stories/

● Explore an interactive map visualising implementations of DHIS2 around the world, on
the DHIS2 In Action page on their website: https://dhis2.org/in-action/

Some current capabilities of the solution

● Online and offline data at entry via DHIS2 webportal, SMS, mobile Android app or direct
import

● Monitoring features and followup with individuals or entities over time
● Various access levels
● Data agnostic
● Language support for web-based platform

○ 7 languages
○ Determine if the app has language and localization support and at what entry

points.
● User-friendly interface and dashboards
● No licensing or monthly fees

○ Consider the cost of technical setup, ongoing hosting, staff time to learn and
maintain the system

● Validation checking to ensure no duplicate entries
● Visualisations galore

○ Customizable and shareable graphs, maps, reports, pivot tables, charts
● Custom DHIS2 Android Capture App

DHIS2 Evaluation Report

https://dhis2.org/rwanda-crvs-eir-integration/
https://dhis2.org/category/impact-stories/
https://dhis2.org/in-action/

○ Seamless syncing of data and integration into DHIS2 platform
○ Mobile capture
○ Optimised for online and offline mode

● Metadata packages
○ “DHIS2 has worked with the World Health Organization (WHO) and other partners

to develop standardized metadata packages to strengthen data use on a national
and international level by supporting adoption of global health data standards
into national routine health management information systems. Packages are
available for analytics dashboards, aggregate data collection, and case-based
(Tracker) programs, and can be installed in standalone DHIS2 systems or
integrated into existing DHIS2 instances.”

■ Read more and download metadata files on the Metadata package
downloads page.

● Suite of DHIS2 web apps
○ The DHIS2 App Hub provides links to additional web applications for the DHIS2

platform. These apps are fully compatible with the core DHIS2 software platform
■ Visit the App Hub

● SMS and Mobile Messaging Solutions available
○ Integration with RapidPro

■ Integration of DHIS 2 with RapidPro (http://rapidpro.io/) for creating
workflows through SMS and messaging systems (Whatsapp, Telegram,
facebook, Viber...)

■ https://github.com/dhis2/integration-dhis-rapidpro
○ A simple web-based interface for sending SMS to individual or groups of health

workers or patients
○ Automatic SMS sent to patients, for example to remind them of an upcoming or

missed visit, or as part of a general education program related to a health
program

○ Reporting data by sending an SMS to the system
○ Sending messages from SMS to users of the system, for example for support or

feedback purposes
○ Registering and enrolling a patient into a health program by sending an SMS
○ Entering individual health data for a patient visit using SMS
○ Checking the status of a patient’s followup using SMS

● Free, ongoing training series and academies
○ DHIS2 community (board): https://community.dhis2.org/
○ In-person events like conferences
○ Comprehensive tutorials on youtube:

https://www.youtube.com/@DHIS2org/playlists
○ Up-to-date documentation and support
○ DHIS2 Academy: an online training & skills program https://academy.dhis2.org/

DHIS2 Evaluation Report

https://dhis2.org/who/
https://dhis2.org/who-package-downloads/
https://dhis2.org/who-package-downloads/
https://apps.dhis2.org/
https://apps.dhis2.org/
http://rapidpro.io/
https://github.com/dhis2/integration-dhis-rapidpro
https://community.dhis2.org/
https://www.youtube.com/@DHIS2org/playlists
https://academy.dhis2.org/

○ Developer portal: a community designed to develop DHIS2 applications and
connect with the software team

Threat and Risk Assessment
Current understanding of the environment threats and risks that the evaluation is being considered within,
with some examples of threats being considered under this evaluation

The Threat, Likelihood, Impact, and Severity columns listed below are in reference to the world, and specific
places where CRVS solutions are implemented, and not specific to the vendor, platform, or solution itself. In
addition, this is a general assessment, to give the reader an idea of what Mitigations are in place for this
specific solution.

Threat Likelihood Impact Severity Mitigations

Describe the
potential
threat, attack
vector, bad
actor

How likely is it that
this could happen?
(generally, not
specific to
vendor/platform)

What will happen if
the threat/attack is
successful?

How severe
will the
impact be?

How does the solution
reduce the risk, impact,
and severity of the
attack?

Identity theft
or fraud

Likely Personal data,
including that of
children, is
increasingly in
demand by identity
thieves

Modera… (1) Encryption and
decryption of fields
stored in the database
(2) Support for OIDC
Identity Layer with
access controls and
flexible deployment of
authentication systems

Privacy
Violation

Moderately likely Digital
transmission,
networked storage
and increased
sharing of birth data
may expose
personal
information to
individuals and
uses that are
against the wishes
of families
participating in
registration

Minor (1) Encryption of data
on the network and at
rest
(2) Multiple Access
Control roles that limit
the scope of access to
data and capabilities.
(3) Data retention
policies and features
(4) Training, education,
and guidance provided
by community

DHIS2 Evaluation Report

Targeting
based on
personal
characteristic
s

Very unlikely The ability to rapidly
gather and process
large amounts of
population data
could contribute to
targeted
advertising, other
forms of
exploitation, and
targeted physical
threats and
violence.

Severe (1) Multiple roles that
limit the scope of
access to data and
capabilities
(2) Limit in user
experience for mass
search and export

Personal
security
violation or
exploitation

Moderately likely Registration
happening outside a
controlled
institutional
environment, such
as a hospital or
registrar’s office,
could place families
at risk of physical
violence and
economic or other
exploitation by
registration agents.

Severe (1) Easy access to
mobile interface, even
with limited
connectivity, keeps as
much data reporting “in
the system” and private
as possible
(2) Focus on defined
user roles, control who
has access to
accounts can help fight
corruption and
exploitation

Incorrect or
Insecure
Deployment*

Moderately likely Deployment of
services by
unqualified staff or
into unvetted or
untested
environments could
lead to data
exfiltration, watering
hole attacks, and
other harms to the
users and
administrators

Critical (1) Availability of
deployment docs,
training, and support
(2) “Platform”
approach creates
potential for an
ecosystem of
certified/trusted
partners for
deployment
(3) Transparency of
open-source and
iterative development
means vulnerabilities
and updates can be
fixed and deployed
quickly

* Ultimately, deployment and operational responsibilities are outside of the scope of the DHIS2 software
project, though based on the mitigations listed, they do the best they can to guide and support the process

DHIS2 Evaluation Report

Initial Assessment Results

Initial Thoughts

General Impressions

The DHIS2 solution is a flexible and robust system which can be implemented and configured to
fit many use cases. This is both a plus and a minus in the context of this evaluation. Given the
vast configurability of the system and the substantial efforts by the developers to create
multiple extension points to add new functionality, it is highly likely that the system could be
adapted into a powerful CRVS system. On the other hand, this functionality does not exist at this
time and would need to be developed prior to adoption.

Key Team Members and Roles

We connected with key members of the DHIS2 team in April over a video call. As a result of the
call, we created a group chat channel on Slack and remain in contact via email as well. We also
had a number of follow-up conversations and reviews of our progress. We are satisfied that the
sets of skills and knowledge represented by these contacts will be sufficient for us to complete
our evaluation. The DHIS2 team was responsive to our questions and spent time reviewing our
evaluation findings and made comments and clarifications to improve the accuracy of our work.
Below are some of the examples of some of the roles we communicated with:

● Lead, DHIS2 Training & Communication Group, University of Oslo, Norway
● Security Lead, DHIS2, Oslo, Norway
● DHIS2 implementation team members

Summary of Initial Interactions

We began our interactions with the team in April, with a kickoff call. From the call, a Slack group
channel was created for further communications. The DHIS2 team is active and willing to
provide any support necessary for this evaluation to be successful. Nonetheless, they are a busy
team and due to our conflicting schedules we were unable to find a time for a live demo of their
system. However, they have a plethora of videos on youtube and recently, from June 12-15,
2023, DHIS2 held their annual conference, #dac2023. This 4-day conference produced
numerous recordings of sessions, plenary talks and future plans for the DHIS2 team (DHIS2
Annual Conference 2023). These recordings have provided useful content in our initial
assessment of the DHIS2 system.

Since beginning our evaluation, the DHIS2 version 40.0 and Android app 2.8 were released, May
2023.

Concerns and Blockers

No current blockers.

DHIS2 Evaluation Report

https://www.youtube.com/watch?v=Huw_rt4x0Gs&list=PLo6Seh-066RzWHF4yzqWwXlM2fnKM-OYF&pp=iAQB
https://www.youtube.com/watch?v=Huw_rt4x0Gs&list=PLo6Seh-066RzWHF4yzqWwXlM2fnKM-OYF&pp=iAQB

● One potential unknown is the general understanding of how user roles & flows work with
a CRVS implementation of DHIS2. We tried to schedule a follow up with the DHIS2 team
regarding a demo, but were unable to do so. We do not feel it is imminent at this time to
pursue this understanding however, we do advise that implementing organizations learn
more about how these processes work.

Questions to investigate further
An interesting takeaway from our initial review is that the DHIS2 team does not have direct
access to any security audits performed on their solution. This is because any audit on DHIS2 is
performed by individual implementers on their own instances which are specific to their setups.
However, DHIS2 will sometimes be asked to validate findings from implementers' reports and
choose to publicly publish any vulnerabilities or security related activities on their website. The
DHIS2 website was recently updated to provide information on their security policies, features
and workflows.

On the website, DHIS2 does provide excellent, organized public information about any disclosed
vulnerabilities, along with other security related updates and activities:

● Trust Center https://dhis2.org/trust/
○ “We are continuously improving our software architecture, features and

processes to minimize the risk to users and their data. On this page you can learn
about our security processes and principles.”

● Security https://dhis2.org/security/
○ “DHIS2 includes industry standard security and privacy features. On this page you

can learn more about the customizable features that are available in the core
DHIS2 software and DHIS2 Android application.”

● Security “Hall of Fame” https://dhis2.org/security/hall-of-fame/
○ “On this page, we recognize the people who have identified and responsibly

disclosed security vulnerabilities to us. Thank you!”

We appreciate this engaged and transparent approach to security and trust.

We are still working to understand the threat and risks associated with a DHIS2 system.
Furthermore, we will continue to consider the additional costs and resources needed to
implement DHIS2 with a CRVS system.

Review of Assets
Product and architecture documents, diagrams, specifications

DHIS2 Evaluation Report

https://dhis2.org/trust/
https://dhis2.org/security/
https://dhis2.org/security/hall-of-fame/

Figure showing the overall DHIS2 architecture

DHIS2 is written in Java and has a three-layer architecture. The presentation layer is
web-based, and the system can be used on-line as well as stand-alone.
https://docs.dhis2.org/archive/en/2.24/developer/html/ch04.html
Overall solution website: https://dhis2.org/
Overall documentation site: https://docs.dhis2.org/en/home.html

The DHIS2 documentation is divided into 4 broad categories: Use, Implement,
Develop, Manage

Stories of Impact explore how the DHIS2 solution has aided countries and communities
to achieve their goals: https://dhis2.org/category/impact-stories/
Use Cases share how the DHIS2 solution can be implemented and what components are
provided in the package

WHO Health Data Toolkit: https://dhis2.org/who/
COVID-19 Surveillance: https://dhis2.org/covid-19/
Immunisation Programs: https://dhis2.org/covid-19/
Education Management: https://dhis2.org/education/
Case-based Programs: https://dhis2.org/tracker-in-action/
Mobile Data Entry: https://dhis2.org/android-in-action/

DHIS2 provides additional training and support via their youtube channel and an online
learning platform

DHIS2 Youtube Channel :https://www.youtube.com/@DHIS2org
DHIS2 Online Academy :https://academy.dhis2.org/

DHIS2 Evaluation Report

https://docs.dhis2.org/archive/en/2.24/developer/html/ch04.html
https://dhis2.org/
https://docs.dhis2.org/en/home.html
https://dhis2.org/category/impact-stories/
https://dhis2.org/who/
https://dhis2.org/covid-19/
https://dhis2.org/covid-19/
https://dhis2.org/education/
https://dhis2.org/tracker-in-action/
https://dhis2.org/android-in-action/
https://www.youtube.com/@DHIS2org
https://academy.dhis2.org/

DHIS2 is open source software, shared under the BSD 3-Clause license, and the source
code is on Github https://github.com/dhis2

Resources for developers to contribute to the source code or create custom web
apps can be found here: https://dhis2.org/development/
DHIS2 has created a custom android app for importing data into their system. It
is integrated as a capture app for field work. The Android App SDK information is
found here: https://dhis2.org/android/sdk/

Access to ticketing systems, discussion boards, wikis, and other public development
infrastructure

DHIS2 Community (board): https://community.dhis2.org/
DHIS2 Academy: https://academy.dhis2.org/
DHIS2 Developer portal:https://developers.dhis2.org/

Inputs to and results from any other security audits
Unavailable. See comments in the section, Questions to investigate further.

Prerequisites for installation, use, access
https://dhis2.org/security/

Operational deployment images, tools, and/or scripts for configuration management
Server tools: https://github.com/dhis2/dhis2-server-tools
DHIS2 in Docker: https://developers.dhis2.org/docs/tutorials/dhis2-docker/
DHIS2 has a server for security testing (https://specimen.dhis2.org), but not
enough disk for intensive logging so we will setup our own DHIS2 docker
installation server found at:
(https://developers.dhis2.org/docs/tutorials/dhis2-docker/):
DHIS2_IMAGE=dhis2/core:2.40.0.1
DHIS2_DB_DUMP_URL=https://databases.dhis2

Source Code Security Audit

Processes and Tools

Research and document the complete “Software Bill of Materials” (SBOM)

We used the open-source tool ‘syft’ to create a Software Bill of Materials for the entire
opencrvs-core repository and also for each Docker image produced from that repository. The
advantage of the former is that we get an overview of all NPM packages used in any of the
microservices. With the latter we can look at only the packages that appear in the final Docker
image for a given microservice. The SBOMs in PDF and Syft export format are available here:

DHIS2 Evaluation Report

https://github.com/dhis2
https://dhis2.org/development/
https://dhis2.org/android/sdk/
https://community.dhis2.org/
https://academy.dhis2.org/
https://developers.dhis2.org/
https://dhis2.org/security/
https://github.com/dhis2/dhis2-server-tools
https://developers.dhis2.org/docs/tutorials/dhis2-docker/
https://specimen.dhis2.org
https://developers.dhis2.org/docs/tutorials/dhis2-docker/
https://databases.dhis2

● PDF:
https://drive.google.com/file/d/1Tk_W687hjol0GDMbr4mNjI7u5-_pGecx/view?usp=drive
_link

● Syft:
https://drive.google.com/file/d/1g7fAm81x2dQc7L4s68SWllcyC1Iw_Yu1/view?usp=shar
ing

Open-Source Software (OSS) vulnerability scanning

We used the open-source tool ‘grype’ to check the source and Docker images for vulnerabilities.

Static application security testing (SAST) scanning

We used the open source SAST scanner ‘semgrep’ to perform an automated analysis of the
Typescript/Javascript codebase.

High-level overview
Our overall impressions of the DHIS2 codebase and its security posture are positive🟢. We
have no high-level concerns regarding the source code security of DHIS2. We found a few minor
issues, detailed below, but nothing of high or critical severity.

1. The backend codebase is primarily written in Java with the Spring Framework. This is an
industry-standard choice for Java-based web applications and has a solid stability and
security patching track record.

2. The frontend codebase is written in Javascript and the React library. While the backend
is one monolithic server-side application, the frontend is split into different applications
that can be dynamically installed and loaded on demand.

3. The project has good automated test coverage and the development team follows best
practices when it comes to implementing and testing new features.

4. There is evidence that the DHIS2 developers respond timely to security concerns and
implement best practices when it comes to patching issues. The project maintains a
security dashboard https://github.com/dhis2/dhis2-core/security and makes it simple
for security researchers to disclose issues, while providing implementers of DHIS2 with
the information they need to resolve found security issues.

DHIS2 Evaluation Report

https://drive.google.com/file/d/1Tk_W687hjol0GDMbr4mNjI7u5-_pGecx/view?usp=drive_link
https://drive.google.com/file/d/1Tk_W687hjol0GDMbr4mNjI7u5-_pGecx/view?usp=drive_link
https://drive.google.com/file/d/1g7fAm81x2dQc7L4s68SWllcyC1Iw_Yu1/view?usp=sharing
https://drive.google.com/file/d/1g7fAm81x2dQc7L4s68SWllcyC1Iw_Yu1/view?usp=sharing
https://github.com/dhis2/dhis2-core/security

Summary of test environment setup, steps taken to complete analysis

In order to complete this assessment we read application source code, deployed a development
instance as described in the project’s documentation, and deeply probed known problem areas
in web applications. Our testing and audit methodology was guided by the OWASP Web Security
Testing Guidelines. https://owasp.org/www-project-web-security-testing-guide/stable/
We also produced a Software Bill of Materials (SBOM) for the DHIS2 Docker image and
performed a manual review of third-party dependencies.

Summary of communication with vendor related to disclosures and direct feedback

In the course of our audit we found a small number of issues that we felt should be addressed
by the DHIS2 developers. We shared our concerns during a video call and in an internal Slack
chat and are satisfied that these issues have received appropriate attention.

Status of any mitigations, patches, updated releases
● Details of work on these and other issues discovered later in our vulnerability scanning

and penetration testing work can be found later in this report.
● Public issue tracker for DHIS2 is available at: https://dhis2.atlassian.net/jira/projects
● Community updates, news, patches, releases and more can be followed here:

https://community.dhis2.org/ and here: https://community.dhis2.org/tag/patch-releases

Outcomes

Below are outcomes of the use of the various manual and automated source code audit
processes and tools. This includes disclosures of any vulnerabilities, bugs, typos, threats, etc,
which were all shared with the DHIS2 team via our communication channel and the public
Github project, as needed.

Finding 1: Improper Validation of Client ip Address for ip Allow Listing

DHIS2 allows a user to create a Personal Access Token (PAT). This token can be used
essentially like a password. It allows a script, program, or other service to access DHIS2 with the
user’s credentials. When creating the PAT the usage of the token can be scoped to certain API
operations (GET, POST, DELETE, etc) as well as scoped to a certain list of IP addresses.

When DHIS2 receives a request containing a PAT it cross-checks the requester's IP address with
those in the allow list. If the requester's IP address is in the allow list, the request is allowed.

To determine the IP address of the requester DHIS2 relies on the X-Forwarded-For header.

DHIS2 Evaluation Report

https://owasp.org/www-project-web-security-testing-guide/stable/
https://dhis2.atlassian.net/jira/projects
https://community.dhis2.org/
https://community.dhis2.org/tag/patch-releases

Our security audit identified a notable issue in the application's handling of the X-Forwarded-For
HTTP header. The application is designed to use this header for IP whitelisting, but it incorrectly
treats the entire header value as a single IP address. This approach leads to a functional bug, as
the X-Forwarded-For header often contains multiple, comma-separated IP addresses, especially
when the client is behind proxies or load balancers.

Example: If a client with IP 1.1.1.1 connects through a proxy with IP 2.2.2.2, the
X-Forwarded-For header received by the application will be 1.1.1.1, 2.2.2.2. The
application, expecting a single IP, fails to parse this correctly and thus cannot match
either IP against its whitelist, leading to legitimate requests being denied.

The DHIS documentation does document this behavior and says:
“IP address validation relies on the X-Forwarded-For header, which can be spoofed. For
security, make sure a load balancer or reverse proxy overwrites this header.”

But elsewhere in the documentation includes a sample nginx config that passes the
x-forwarded-for header to the application. This config includes the following line:

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

This line appends the client's IP address ($remote_addr) to the X-Forwarded-For header. If the
header is already present in the request, Nginx appends the client's IP address to the existing
header.

In production deployments there can often be several reverse proxies leading to several ip
addresses in the X-Forwarded-For header. DHIS2 currently simply does not support this case,
and will always fail to allow the requests as described above.

Recommendation: DHIS2 provides or supports an alternative header for user IP address
identification, such as X-Real-IP, and/or updates its documentation to use the nginx http_realip
module and iterates the importance of correctly defining trusted proxy addresses to prevent
IP spoofing.

References:
● Documentation referencing the trust of X-Forwarded-For

https://docs.dhis2.org/en/use/user-guides/dhis-core-version-master/working-with-your-
account/personal-access-tokens.html?h=x-forwarded+master#serverscript-context

● Recommended NGINX reverse proxy config
https://docs.dhis2.org/en/manage/performing-system-administration/dhis-core-version-
master/installation.html?h=x-forwarded-for+master#install_enabling_ssl_on_nginx

DHIS2 Evaluation Report

https://nginx.org/en/docs/http/ngx_http_realip_module.html
https://nginx.org/en/docs/http/ngx_http_realip_module.html
https://docs.dhis2.org/en/use/user-guides/dhis-core-version-master/working-with-your-account/personal-access-tokens.html?h=x-forwarded+master#serverscript-context
https://docs.dhis2.org/en/use/user-guides/dhis-core-version-master/working-with-your-account/personal-access-tokens.html?h=x-forwarded+master#serverscript-context
https://docs.dhis2.org/en/manage/performing-system-administration/dhis-core-version-master/installation.html?h=x-forwarded-for+master#install_enabling_ssl_on_nginx
https://docs.dhis2.org/en/manage/performing-system-administration/dhis-core-version-master/installation.html?h=x-forwarded-for+master#install_enabling_ssl_on_nginx

Finding 2: Lack of default Access-Control-Allow-Origin Header Configuration

Our source code review has identified an oversight in the default configuration and
documentation of the application regarding the handling of the Access-Control-Allow-Origin
header, commonly referred to as CORS. While the application correctly supports the
Access-Control-Allow-Origin header validation and configuration, it does not include any
allowlisted origins in its out-of-the-box installation. Furthermore, the installation documentation
lacks explicit guidance on the necessity of configuring whitelisted origins for security purposes.

The absence of pre-configured allowlisted origins poses a potential security risk. This sets the
stage for a Cross-Origin Resource Sharing security vulnerability in a deployed instance of DHIS2.

Incorrect or overly permissive CORS configurations can introduce several significant security
risks to a web application. CORS is a mechanism that allows or restricts web pages from
making requests to a domain different from the one that served the web page, and is crucial for
implementing the same-origin policy.

Recommendation: DHIS2 improve the installation documentation to emphasize the
importance of configuring CORS allowlisting

It should provide:

● Clear instructions on how to set up whitelisted origins.
● Best practices for determining which origins to whitelist.
● The security implications of incorrect or overly permissive configurations.

*Finding 3: Use of TripleDES for Encryption of Some Sensitive Data is moved to a private annex
and has been addressed directly with the DHIS2 team.

Finding 4: Assessment of User Input Sanitization and XSS Mitigation

Our security audit has identified a potential vulnerability in the application's approach to
handling user input and mitigating Cross-Site Scripting (XSS) attacks. The application currently
does not sanitise user inputs before storing them in the database, relying instead on the
frontend framework, React, for XSS mitigation. While React does provide a level of protection
against XSS by escaping strings in JSX, this approach has limitations, particularly in a
multi-developer environment.

Implications of Relying Solely on Frontend Frameworks

DHIS2 Evaluation Report

1. Third-Party Developer Extensions:
a. The application allows third-party developers to extend its frontend. In such

scenarios, the reliance on React's XSS protections may not be sufficient if a
different framework is used. Third-party developers might not be fully aware of or
adhere to best practices for preventing XSS, leading to vulnerabilities.

2. Long-Term Data Integrity:
a. Data stored in the database without proper sanitization poses a risk over time. If

the application's frontend is modified or extended in the future, or if data is
loaded into a different application that does not use React, previously stored
unsanitized data could become a vector for XSS attacks.

3. Backend-Rendered Scenarios:
a. In cases where the backend directly renders data for the frontend, or in

server-side rendering scenarios, React's XSS protections would not apply,
potentially exposing the application to XSS vulnerabilities.

Our core recommendations are:
● Training and Documentation: Provide comprehensive training and documentation for

all developers on the importance of input sanitization and the specific methods to be
used in this application. This is particularly important for third-party developers who
might not be familiar with the application's security practices.

● Regular Code Reviews: Implement regular code reviews and security audits to ensure
that input sanitization is consistently applied across the application, especially in parts
of the codebase developed by external contributors.

Optional, but recommended:

● Explicit Sanitization Policy: The application should adopt a policy of sanitising all user
inputs before persisting them in the database. This policy should be explicitly stated and
communicated to all frontend developers, including third-party contributors. Utilise
robust input sanitization libraries on the server side to cleanse inputs of potentially
malicious content. This ensures a consistent level of security, regardless of the frontend
framework in use.

While React's XSS mitigation features provide a level of security, they should not be the
sole line of defence against XSS attacks in an application that handles user inputs,
particularly when third-party developers can contribute code. Improving training,
documentation, and code review processes are essential steps in reinforcing the
application's defence against XSS attacks. These measures ensure that all developers,
including third-party contributors, are adequately equipped to handle XSS risks.
Additionally, adopting an explicit sanitization policy for user inputs, while optional, is
highly recommended. It serves as an extra layer of security, safeguarding the application
against a broader range of XSS attack vectors and ensuring long-term data integrity.

DHIS2 Evaluation Report

Finding 5: dangerouslySetInnerHTML should disqualify an application from the App Hub

The current guideline for third-party app developers in App Hub advises developers against
using dangerouslySetInnerHTML (a mechanism in React that opens the door for XSS).

We recommend a more stringent policy: the use of dangerouslySetInnerHTML in an
application should be grounds for disqualification from the App Hub, with exceptions only
considered on a case-by-case basis.

The dangerouslySetInnerHTML property in React bypasses the framework's built-in XSS
protection by allowing raw HTML to be set directly from JavaScript. This opens a significant
vulnerability, as it can easily lead to XSS attacks if the content is not properly sanitised, which as
we have laid out in Finding 4, is the case.

Allowing applications that use dangerouslySetInnerHTML contradicts security best practices. It
sends a message that the app store tolerates potentially unsafe practices, which could lower the
overall security standards of the applications it hosts.

By rejecting applications that use dangerouslySetInnerHTML, the app store encourages
developers to seek safer alternatives for rendering HTML content, such as using safer libraries
or methods that ensure proper sanitization.

While the use of dangerouslySetInnerHTML should generally disqualify an application, there may
be exceptional cases where its use is justified and secured. If all of the following conditions are
met, then the use of dangerouslySetInnerHTML may be justified.

1. Specific Functional Requirements: In rare cases, an application might have a legitimate
need to render HTML content directly, and no safer alternative meets these
requirements.

a. Example: DHIS2’s own markdown rendering component uses
dangerouslySetInnerHTML. This component converts markdown content from
users into HTML. However, before this process, the unsanitized user input is
passed through the MarkdownIt library, which performs its own comprehensive
sanitization.

2. Robust Sanitization Measures: The application must demonstrate that it implements
robust, foolproof sanitization measures to cleanse any dynamically rendered HTML
content, effectively mitigating the risk of XSS attacks.

3. Thorough Security Review: Applications requesting an exception must undergo a
thorough security review. This review should rigorously assess the necessity of using
dangerouslySetInnerHTML and the effectiveness of the implemented sanitization
measures.

DHIS2 Evaluation Report

https://github.com/dhis2/d2-ui/blob/56e6c234bfaf8c6bc71a0b0cfb08bcfdbadf5002/packages/rich-text/src/parser/Parser.js

References:

● App Developer Documentation mentioning XSS
https://developers.dhis2.org/docs/guides/apphub-guidelines/#secure

● App Developer Documentation mentioning App Hub policies
https://developers.dhis2.org/docs/guides/apphub-guidelines/#appropriate-for-dhis2

Finding 6: More Stringent Content-Security-Policy Headers Recommended

Our security audit reveals inconsistencies in the application's implementation of
Content-Security-Policy (CSP) headers. Notably, while the login page employs a robust CSP with
script-src 'self' 'nonce-[nonce-value]', this level of security is not consistently applied across
other pages. Given that the application supports extensions by third-party developers, the lack
of uniform CSP implementation presents security risks.

CSP is an important security measure in mitigating the following risks:

1. Cross-Site Scripting (XSS) Attacks:
a. CSP is a critical defence against XSS attacks. By specifying which sources the

browser should accept scripts from, CSP prevents the execution of unauthorised
or malicious scripts. Without CSP on all pages, the application is more vulnerable
to XSS, especially in applications created by third-party developers.

2. Data Theft and Site Integrity:
a. CSP helps in safeguarding user data and maintaining the integrity of the site. It

restricts resources (like scripts, images, and stylesheets) to trusted sources,
thereby preventing attackers from injecting malicious content or exfiltrating
information.

3. Third-Party Code Risks:
a. Third-party applications can introduce unknown or untrusted code. CSP serves

as a safeguard, ensuring that only scripts from allowed sources are executed,
thereby reducing the risk of malicious code execution.

The App Hub guidelines recommend avoiding externally hosted scripts and stylesheets, citing
security and performance issues:

“Avoid externally hosted scripts and stylesheets: External scripts and stylesheets, such
as those served by global CDNs, should be avoided unless absolutely necessary - these
can cause security and performance issues when accessed in various global contexts.”

DHIS2 Evaluation Report

https://developers.dhis2.org/docs/guides/apphub-guidelines/#secure
https://developers.dhis2.org/docs/guides/apphub-guidelines/#appropriate-for-dhis2

This is a sound policy, but we recommend enforcement of this policy via CSP headers from
the backend application.

While avoiding external scripts is a good practice for the reasons mentioned, it should be
complemented with a robust CSP. CSP adds an additional layer of security. Even if external
scripts are used, CSP can restrict them to trusted sources, minimising the risk of malicious
content. CSP provides granular control over resource loading and script execution, allowing for a
more tailored security approach that aligns with the application's specific needs. As the
application evolves and new features or third-party integrations are added, CSP can be
dynamically updated to accommodate these changes while maintaining a strong security
posture.

DHIS2’s existing feature for dynamically updating CORS Access-Control-Allow-Origin headers
could be used as a model for a new feature to manage Content-Security-Policy (CSP) headers.

An alternative approach could involve allowing applications to specify their CSP requirements in
their manifest. This method ensures that when an application or extension is loaded, its CSP
requirements are automatically applied, streamlining the security process and reducing manual
configuration errors. By requiring CSP specifications in the manifest, developers are encouraged
to consider and address security from the outset of application development. Having CSP
requirements declared in the manifest simplifies the process of security audits, as auditors can
quickly ascertain whether the specified policies align with security best practices.

We recommend the App Hub should adopt a more stringent policy for submissions:
1. Rejection of External Assets by Default:

a. Applications that rely on external scripts or stylesheets should be rejected by
default. This policy reduces the risk of third-party vulnerabilities and ensures a
higher degree of control over the application's content.

2. Disallowing 'unsafe-inline':
a. The policy should explicitly disallow the use of 'unsafe-inline' in CSP directives.

This measure is crucial in preventing the execution of inline scripts and styles,
which are common vectors for XSS attacks.

3. Case-by-Case Exceptions:
a. Exceptions to these rules should be granted only in specific, justified cases.

Developers seeking exceptions must provide comprehensive documentation
and justification for their requirements. Applications requesting an exception
must undergo a thorough security review to ensure that the use of external

DHIS2 Evaluation Report

assets or 'unsafe-inline' elements does not compromise the application's
security.

References:

● App Developer Documentation mentioning avoiding external assets
https://developers.dhis2.org/docs/guides/apphub-guidelines/#secure

Finding 7: Recommendations for Explicit SameSite Cookie Policy

DHIS2 utilises cookie-based authentication but does not explicitly set a SameSite policy for its
cookies. While modern browsers default to a SameSite policy of 'Lax', which offers a reasonable
level of security, there is an inherent risk in relying on browser defaults, particularly given the
variability in user browser choices and versions.

Not all users may be using modern browsers with a default 'Lax' SameSite policy. Older or less
common browsers might handle cookies differently, potentially leading to security
vulnerabilities. Explicitly setting the SameSite policy ensures consistent behaviour across all
browsers.

The SameSite cookie attribute is a key defence against Cross-Site Request Forgery (CSRF)
attacks. By setting it to 'Lax' or 'Strict', the application can prevent the browser from sending
cookies along with cross-site requests, thereby mitigating the risk of CSRF attacks.

Explicitly setting the SameSite attribute reflects a proactive approach to security, demonstrating
a commitment to best practices and attention to detail in security configurations.

As a general recommendation, the SameSite attribute should be explicitly set to 'Lax'.

This setting balances security and functionality, allowing cookies to be sent in top-level
navigations, which is typically sufficient for most applications.

For applications where deep linking from external sites is not a requirement, setting the
SameSite attribute to 'Strict' offers an even higher level of security. This setting prevents the
browser from sending cookies on any cross-site requests, further reducing the risk of CSRF
attacks.

DHIS2 Evaluation Report

https://developers.dhis2.org/docs/guides/apphub-guidelines/#secure

The choice between 'Lax' and 'Strict' should be based on the specific needs and behaviours of
the application. Factors to consider include the nature of user interactions, the necessity of
cross-site navigation, and the overall security requirements of the application.

Application Architecture Audit

High-level overview

Our overall impressions of the DHIS2 architecture and extensibility are positive🟢.

DHIS2 has been actively developed for nearly two decades. The platform is built with
widely-used languages and tooling that have stood the test of time. DHIS2 has maintained a
predictable biannual release schedule for many years and the project’s adoption, longevity and
continuous incremental improvement speak to the solid technological underpinnings of the
project.

DHIS2 is not a CRVS application, though it has been used for this purpose. It is a
highly-user-configurable data collection and analysis tool that was originally created for a
healthcare use case, but which has also been used in education, logistics, and human resources
contexts.

Given that significant customization would likely be necessary if this project were adopted for
UNICEF’s CRVS needs, this architectural audit will focus largely on the questions of
configuration and extensibility.

Summary of test environment setup, steps taken to complete analysis
In order to complete the architectural analysis assessment we read the application source code,
the infrastructure source code, and deployed a development environment as described in the
documentation. We also reviewed the existing architectural documentation.

Relevant source code and documentation sources:
● Documentation available at https://docs.dhis2.org/en/home.html and

https://developers.dhis2.org
● Videos targeted toward developers on the DHIS2 YouTube channel

(https://www.youtube.com/c/Dhis2Org)
● Streamed parts of the annual DHIS2 conference

(https://www.youtube.com/watch?v=Huw_rt4x0Gs&list=PLo6Seh-066RzWHF4yzqWwXl
M2fnKM-OYF)

DHIS2 Evaluation Report

https://docs.dhis2.org/en/home.html
https://developers.dhis2.org
https://developers.dhis2.org
https://www.youtube.com/c/Dhis2Org
https://www.youtube.com/watch?v=Huw_rt4x0Gs&list=PLo6Seh-066RzWHF4yzqWwXlM2fnKM-OYF
https://www.youtube.com/watch?v=Huw_rt4x0Gs&list=PLo6Seh-066RzWHF4yzqWwXlM2fnKM-OYF

● We also started a local cluster for testing using the DHIS2 command line tool
(https://cli.dhis2.nu/#/getting-started) and used that tool to create a test application to
extend the core functionality.

Summary of communication with vendor related to disclosures and direct feedback

There were no architectural issues requiring disclosure or mitigation discovered during this
portion of the assessment.

Outcomes

Overview of the structure of the application

● The application is primarily written in Java, Kotlin and Javascript
● The backend core is written in Java using the Spring framework

○ Most of the business logic resides in this part of the application and it provides
an API that both the web frontend and Android applications connect to

● The web frontend is a Javascript application written using the React framework
○ DHIS2 has created an extensive library of React UI components that are used in

the web frontend and can be imported into custom applications built to extend
the core functionality

● The Android application is written mainly in Kotlin, a modern interoperable Java
alternative.

○ DHIS2 also created an Android SDK that can be imported into a custom Android
application to facilitate data exchange with the backend.

● Data is stored in a PostGIS-enabled Postgres database
○ Postgres is arguably the preeminent open-source database and PostGIS adds

standards-compliant geospatial capabilities to the core database.

Whereas other applications we have evaluated use a microservice architecture in which
different app components are split into independent services that communicate with one
another, DHIS2 is firmly in the opposite camp, commonly referred to as a “monolithic”
architecture.

The advantage of a monolithic architecture is that development and deployment are more
straightforward. The developer does not need to maintain a mental model of how different
services interact and can focus on implementing business logic. A deployed monolith has very
few moving parts which can make the application easier to scale and secure.

DHIS2 Evaluation Report

https://cli.dhis2.nu/#/getting-started

The disadvantage of this architecture from a developer’s perspective is that a monolithic code
base can be overwhelming and seemingly minor code changes may have far-reaching effects
on other parts of the codebase. The DHIS2 core app has thousands of source code files
befitting its massive featureset and long development history and contributing to this codebase
would require a very significant period of exploration before a developer could confidently make
changes.

A disadvantage of monolithic architecture from a deployment perspective is that if certain
elements of the application require extra compute resources to scale, the entire application
must be scaled up to address those requirements.

Evaluation of Configurability

DHIS2 is first and foremost a flexible, user-configurable data warehousing and reporting
application. By design it makes very few assumptions about what the user is trying to achieve.
The few assumptions it does make are:

1. You have data that can be captured in a structured format, likely through a web or mobile
form. This data may take the form of either single data points or aggregate data.

2. You wish to report on that data, potentially in a visual manner.
3. You may have multiple projects over time that would need to be configured separately,

but there may be a requirement to report across these projects.
4. Users will have predetermined roles in an organisational hierarchy that will determine

access to different parts of the application and its datasets.
5. The people configuring the application may not have programming experience.

Since these assumptions are nearly universal in data collection and presentation applications,
they impose few limitations.

In written and video documentation, a recurring theme is that almost every aspect of DHIS2 is
configurable via the UI. From creating projects, to creating organisational hierarchies and roles,
to building forms and visualisations, everything can be achieved by pointing, clicking, and typing.
The configuration is all stored in the same backend database that stores the collected data. The
user-facing interface for collecting data is dynamically constructed from the configuration.

DHIS2 is organised as a core offering plus a selection of independent sub-applications that can
change or extend the core. To customise DHIS2, the user will use the Maintenance app. It allows
configuration of:

● organisational unit hierarchy
● data elements (aka fields)

DHIS2 Evaluation Report

● indicators (aka calculations)
● data sets & data entry forms
● users
● user-based access controls

An understanding of the hierarchy of these entities is essential to the configuration process. If
any part of the hierarchy is incomplete, the “capture” user interface will not accept any data.
DHIS2 also splits data collection into periods of various lengths, and incorrectly setting the start
date of a period can also prevent data entry. DHIS2 provides excellent documentation and a
video introduction to the configuration process.

Though everything can be configured via point-and-click, many data-collection initiatives require
a more formalized approach and may include so many data elements and organizational units
that manual entry would be impractical and error-prone, especially if multiple users were to enter
configuration data in an inconsistent manner. Thankfully, DHIS2 allows import of complete data
hierarchies in the form of JSON documents. The project structure can then be version-controlled
and updates made through subsequent data imports. In fact, this is the recommended method
to get started with DHIS2’s existing CRVS module
(https://docs.dhis2.org/en/topics/metadata/chis-community-health-information-system/design
/civil-registration-and-vital-statistics.html) which is available for download here:
https://packages.dhis2.org/en/CRVS_VE/1.1.1/DHIS2.39/CRVS_VE_1.1.1_DHIS2.39.zip.

Evaluation of Extensibility

Extensibility is a core feature of DHIS2: the project’s developers have provided many extension
points and tools to facilitate custom development.

When creating data-input applications, you may choose one of three types of implementations:

● Data Forms: Totally data-driven, based on your custom data model. They are generated
automatically and offer no control over layout.

● Section Forms: Allow customization of the order and grouping of input elements, while
maintaining a no-frills interface. They are easy to translate and update, and are
compatible with web and Android.

● Custom Forms: Allow full customization of the user interface, but are not available on
Android and require more development resources for upkeep.

We believe that custom development will likely be required to implement DHIS2 for CRVS uses,
so we focused our investigation on the tools provided by DHIS2 to facilitate this type of
customization. These tools include a comprehensive REST API for reading and writing data from
external applications and a “plugin” architecture that provides a standard way to create and

DHIS2 Evaluation Report

https://docs.dhis2.org/en/topics/metadata/chis-community-health-information-system/design/civil-registration-and-vital-statistics.html
https://docs.dhis2.org/en/topics/metadata/chis-community-health-information-system/design/civil-registration-and-vital-statistics.html
https://packages.dhis2.org/en/CRVS_VE/1.1.1/DHIS2.39/CRVS_VE_1.1.1_DHIS2.39.zip

deploy apps within the DHIS2 platform. The developers have wisely chosen to use these tools
themselves to build first-party functionality, thereby ensuring that they are feature-rich and
well-maintained when used by third-parties.

DHIS2 Evaluation Report

The DHIS developers have created a number of tools to make the process of extending the core
application simpler and more consistent with the platform. These include:

● a command-line tool that can create test DHIS2 clusters and generate the “scaffolding”,
or default project-structure, of a custom application

● a web UI library that custom apps may use to better match the look and feel of the
platform

● an “app runtime” that features a data-fetching library for web applications that wraps the
DHIS2 REST API

● an Android SDK to facilitate data-fetching in custom Android applications

To evaluate the development experience we created a simple React web application that reads
and writes data using the data-fetching library and displays it using the DHIS2 UI library. We also
imported the provided CRVS module to create the basic data collection hierarchy.

The data-fetching library was easy to use: instead of managing many HTTP requests to various
API endpoints, developers can describe the requests they wish to make as a JSON object. The
library takes care of constructing the correct HTTP request and the converting parameters and
results between text and Javascript objects. The results can be accessed directly inside a React
component. A query for a list of programs would look like this:

const query = {
results: {
resource: "programs",
params: {

DHIS2 Evaluation Report

pageSize: 20,
fields: ["id", "displayName", "created"],

},
},

};

The UI library is extensive conforms to expectations of a React component library. It includes all
of the basic elements needed to build a form-driven user interface including buttons, tables and
menus. DHIS2 provides the components as both a React Storybook, which allows implementers
to experiment with component configuration, and a Figma file that is optimised for a designer’s
workflow. The Storybook is available here https://ui.dhis2.nu/demo/ and shows the breadth of
the library.

The only minor potential complaint about the tools available is that they are written in plain
Javascript at a time when most similarly-sized projects have transitioned to Typescript. As a
typed-superset of Javascript, Typescript allows for clearer function interfaces, improved
maintainability and better development-environment integration. However, we understand that
the choice of language may represent a preference or necessity of the team, based on project
history or available developer resources.

There are several planned additions to the dev tools, some of which are outlined in this slide
from a video from a developer workshop:

We should also note that these development tools are targeted at web-based usage. Since the
components provided by the UI library are responsive, they can be used in mobile environments.
If a truly native equivalent of a custom app were a requirement, then development resources
would also be needed to develop an equivalent capture experience on Android.

DHIS2 Evaluation Report

https://ui.dhis2.nu/demo/

Evaluation of maintainability and performance at scale

The DHIS2 has a long history of delivering improvements on a consistent schedule. New
versions have been released at roughly 6-month intervals, typically with a major release in Spring
and a patch release in the Fall. The current major version (40) was released in May 2023 and the
next version will be released next May 2024. With their latest release v40 and the Android
Capture App release v2.8, DHIS2 streamed a live webinar on May 10, 2023, to share updates and
discuss the newest features in their release. The video can be found on YouTube at

. Additionally, DHIS2Webinar on new DHIS2 software releases: v40 and Android v2.8
provides guidance on future features on their roadmap (https://dhis2.org/roadmap/) which
includes the next two major releases. The fact that the organisation has delivered updates with
such consistency for more than a decade strongly implies a well-managed and maintained
project.

When considering performance at scale, one of the main questions is whether the application
can be scaled horizontally (adding more instances of the application as usage goes up) or
vertically (increasing the compute resources available to a single instance). The technologies
used in the DHIS2 application can be scaled in either dimension, but it seems most amenable to
vertical scaling. Happily this method of scaling is also usually operationally simpler than the
alternative. In particular Postgres is easily scaled by increasing available compute resources
and given our current understanding of DHIS2 usage it seems likely that even a large installation
could use a single, well-provisioned database.

The DHIS2 team provided feedback that it can also scale horizontally through a cluster.

Penetration Testing Audit

Summary of test environment setup

Version 2.40.0.1
Build revision cddb161
Build date June 30, 2023 at 12:54

Test endpoint: https://dhis.test.gpcmdln.net/

Details of process, setup, tools utilised

We utilised cloud-based testing suites and services, alongside human teams, that offer a variety
of capabilities and options for one-time and ongoing scanning and testing. While fully bespoke

DHIS2 Evaluation Report

https://www.youtube.com/watch?v=baKXBZjrq7A
https://dhis2.org/roadmap/
https://docs.dhis2.org/en/full/manage/dhis-core-version-master/system-administration-guide.html#install_web_server_cluster_configuration
https://dhis.test.gpcmdln.net/

and custom security audits are always a valuable service, they come at a very high cost in both
money and time. Our approach for this evaluation was to use tools and techniques that are both
within the realm of the available budget, and provided a more dynamic, ongoing approach for
uncovering vulnerabilities. We recommend this approach for use not only in the evaluation
stage, but also as part of the ongoing monitoring in future eCRVS production deployments.

● Intruder.io: fast, cheap automated vulnerability scanning service, with multiple vantage
points; Less feature rich, but still a good tool for initial “smoke test” results

○ Emergent Threats performs automated, nearly daily additional ongoing, focused
scans based on newly identify threats and vulnerabilities added to the Astra
database

○ Nessus Agents extend scanning to run within server-infrastructure from the
“inside out” uncovering vulnerabilities and configuration issues that an attacker
may take advantage of if they compromise a network

● Astra: Powerful tool+service providing Automated, Vetted, and Emergent Threats
vulnerability scanning

○ Automated is machine-only scripted testing of a comprehensive set of known
vulnerabilities

○ Vetted builds on the Automated result, then adds human review and verification
of identified potential vulnerabilities to add more detail, and identity and label
“false positives”

● Manual Penetration Testing
○ Building on results of automated and vetted scanning, a manual penetration test

utilises the same approach, techniques, attack vectors, and known vulnerabilities,
but with added creativity and skills of a human-based attacker.

○ Very few “false positive” outputs come from this step, due to the human operator
understanding if they have been able to achieve a valuable

Outcomes

The Manual Penetration Testing of the test DHIS2 instance occurred during the end of
November and beginning of December 2023. The testing was performed from a remote
attacker’s perspective with the following goals:

● To identify security loopholes, business logic errors and evaluate effectiveness of
existing security controls in the application that pose a risk to the systems,
infrastructure, or data.

● Recommend technical security best practices to improve security posture of the target
applications audited.

DHIS2 Evaluation Report

● Explain the potential impact of the identified vulnerabilities, such as the extent of data
exposure, potential financial losses, or reputational damage that could occur if they were
exploited by malicious actors.

● Provide clear and actionable recommendations for addressing the identified
vulnerabilities.

From the Manual Penetration Testing, a total of 10 High or Medium vulnerabilities and the
remaining findings and recommendations at “Low” or “Info”.

NOTE: The scores listed in the port use a custom “Risk Score” value, which is different than the
typical industry Common Vulnerability Scoring System (CVSS) Score. In the table below, we will
use the CVSS score. (more info at:
https://www.balbix.com/insights/understanding-cvss-scores)

Full PDF reports of findings from the Manual Penetration Testing is available here:
● Executive Summary:

https://drive.google.com/file/d/1hEtn1tYHOBs3B6Xe44nUIB7BxDwmKQ3j/view?usp=sh
aring

● Full Report:
https://drive.google.com/file/d/1wj9aER5p1lfQ1IGvqOZ2x0KA54GkG-82/view?usp=shari
ng

DHIS2 Evaluation Report

https://drive.google.com/file/d/1hEtn1tYHOBs3B6Xe44nUIB7BxDwmKQ3j/view?usp=sharing
https://drive.google.com/file/d/1hEtn1tYHOBs3B6Xe44nUIB7BxDwmKQ3j/view?usp=sharing
https://drive.google.com/file/d/1wj9aER5p1lfQ1IGvqOZ2x0KA54GkG-82/view?usp=sharing
https://drive.google.com/file/d/1wj9aER5p1lfQ1IGvqOZ2x0KA54GkG-82/view?usp=sharing

High-level concerns, issues
Here is a summary of the top vulnerabilities discovered and their proposed fix. We will be
sharing these with the DHIS2, and give them full access to information to reproduce these
findings.

Title Score
/Severity

Description Proposed Fix
Solution/Vendor Comments

[CRITICAL]
PDF File
Upload leads
to Stored
Cross Site
Scripting
(XSS)

6.3
Medium

During the Pentest it
was observed that a
user could trigger
Stored XSS
vulnerability by
uploading a
malicious pdf

In order to prevent
Stored XSS attacks, the
best way is to handle
the input securely in
both client-side and
server-side code in a
proper manner before
it gets stored
permanently on the
webserver

Fixed in next release:
https://dhis2.atlassian.net/
browse/DHIS2-16845
review related to CORS
settings, and feedback that
attack is difficult to
implement, and focus is on
infecting client and not
compromising the data of
the service itself

Dangerous JS
Functions

7.4 High Most common
JavaScript attacks
vectors include:
executing malicious
script, stealing a
user’s established
session data or data
from the browser’s
localStorage, tricking
users into performing
unintended actions,
exploiting
vulnerabilities in the
source code of web
applications.

Employ JavaScript
security best practices
to reduce this risk

Sensitive
information
Disclosure
(Access to
System
Configuration)

4.3
Medium

During the Pentest it
was observed that a
low-level user could
access sensitive
information such as
Server Settings by
accessing the
affected API as
mentioned in the POC

Make it mandatory for
developers to declare
‘Allowed’ access for
each resource, and by
default, deny it

False positive. These API
endpoints provide
configuration settings for all
authenticated users and don’t
contain any sensitive
information. In some specific
setups, one of these
endpoints may contain an
SMS gateway configuration

DHIS2 Evaluation Report

https://dhis2.atlassian.net/browse/DHIS2-16845
https://dhis2.atlassian.net/browse/DHIS2-16845
https://dhis2.atlassian.net/browse/DHIS2-16845

(although in an encrypted
form), which is unnecessary
to disclose. There is a
remediation task to remove
this encrypted snippet as
well.

Unauthorised
Message Send

6.6
Medium

During the Pentest it
was observed that an
unauthorised user
could send a
message in an
ongoing message
thread

Make it mandatory for
developers to declare
‘Allowed’ access for
each resource, and by
default, deny it

It will be fixed in the next
release. Issue ID:
https://dhis2.atlassian.net/br
owse/DHIS2-16846

Anti-CSRF
Token Missing

6 Medium The site appears to
be vulnerable to a
cross-site request
forgery (CSRF)
attack. With every
POST request, an
anti-CSRF token
should be sent

Enable CSRF
Protection, Use
Security Libraries and
Frameworks, Generate
a Unique Token,Verify
the Token

CORS
Misconfigurati
on

6 Medium The site appears to
be vulnerable to a
cross-site request
forgery (CSRF)
attack. With every
POST request, an
anti-CSRF token
should be sent

Limit the Origins,
Configure Headers, Use
Pre-Flight Requests,
Use Authentication

Could not reproduce this
issue and would like to see
more evidence.

Server Leaks
Version
Information
via "Server"
HTTP
Response
Header Field

5.7
Medium

This information can
be valuable to
attackers as it
reveals the specific
version of the
software running on
the server, which can
be used to identify
known vulnerabilities
and attack the server

Remove the version
information from the
Server HTTP response
header field

This issue is outside of the
DHIS2 scope. The version
information can be reported
by software (application
server, reverse proxy web
server) that DHIS2 runs on.
We have no control over how
implementers configure their
systems, although we will add
some guidance on this topic
to our documentation

DHIS2 Evaluation Report

CSP: style-src
unsafe-inline

5.2
Medium

These attacks are
used for everything
from data theft to site
defacement or
distribution of
malware

Ensure that your web
server, application
server, load balancer,
etc. is properly
configured to set the
Content-Security-Policy
header

Unauthorised
Google Maps
API Key Usage

6.5
Medium

We were able to find
that Google Maps
API Key is vulnerable
to unauthorised
access by other
applications

Please follow the API
best practices from
https://developers.goo
gle.com/maps/api-key-
best-practices

This is a legacy Google Maps
API key intended for public
use. It was also hard-coded in
the Github repository.
However, we are moving away
from this practice and will
remove this key entirely both
from the code and public
access.

Software
Component
Version
Leaked

4.9
Medium

The web/application
server is leaking
information

Ensure that your web
server, application
server, load balancer,
etc. is configured to
suppress software
version leaks

Out of scope. The version
information can be reported
by software (application
server, reverse proxy web
server) that DHIS2 runs on.
We have no control over how
implementers configure their
systems, although we will add
some guidance on this topic
to our documentation.

CSP: script-src
unsafe-inline

4.8
Medium

These attacks are
used for everything
from data theft to site
defacement or
distribution of
malware

Ensure that your web
server, application
server, load balancer,
etc. is properly
configured to set the
Content-Security-Policy
header

Vulnerable JS
Library

4.8
Medium

A JavaScript library
that is missing
security patches can
make your website
extremely vulnerable
to various attacks

it is recommended to
keep all JS libraries
used in the application
up-to-date and to
regularly check for any
known vulnerabilities in
the libraries

Username
Enumeration
via Forgot
Password

5.3
Medium

it was observed that
the user could
enumerate valid
registered users by

It is recommended to
show a response that
does not show
variation leading to

Issue tracked here:
https://dhis2.atlassian.net/br
owse/DHIS2-16848

DHIS2 Evaluation Report

https://dhis2.atlassian.net/browse/DHIS2-16848
https://dhis2.atlassian.net/browse/DHIS2-16848
https://dhis2.atlassian.net/browse/DHIS2-16848

analysing the
response the server
sends back on
triggering a reset
password request

username enumeration
when brute forced

Feedback

Summary of communication with vendor related to disclosures and direct feedback

We have provided the DHIS2 access to this document, and given them opportunity for direct
feedback and communication with us through multiple channels. You can see their comments
in the table above.

Status of any mitigations, patches, updated releases

There has been significant progress to review, reproduce, address and resolve the open issues
that have been found. We look forward to continuing our communication with the DHIS2 team to
support any future response to this audit process.

Evaluation of the holistic approach in terms of cyber security
/ Analysis of history of public vulnerabilities

DHIS2 provides a public forum named “The DHIS2-Security Community of Practice” at
https://community.dhis2.org/tag/dhis2-security. Their transparent and engaged approach to
this is excellent and laudable. Through this site you can see any history of announcements,
patches, and public disclosures for the last few years.

Overall, DHIS2 works well as an active, engaged, transparent open-source project that has to
respond to the discovery of bugs, flaws, and vulnerabilities in a public way.

DevSecOps Analysis

Summary of test environment setup, steps taken to complete analysis

An article1 in the dhis2-server-tools documentation describes the different approaches to the
installation of DHIS:

● Manual installation

1https://github.com/dhis2/dhis2-server-tools/blob/b90659fcf1dfefaf24983cd5c1e493d5b5274594/docs/Diff
erent-install-approaches.md (Archive: https://archive.ph/hxM0c)

DHIS2 Evaluation Report

https://community.dhis2.org/tag/dhis2-security
https://github.com/dhis2/dhis2-server-tools/blob/b90659fcf1dfefaf24983cd5c1e493d5b5274594/docs/Different-install-approaches.md
https://github.com/dhis2/dhis2-server-tools/blob/b90659fcf1dfefaf24983cd5c1e493d5b5274594/docs/Different-install-approaches.md
https://archive.ph/hxM0c

● dhis2-server-tools (Ansible) https://github.com/dhis2/dhis2-server-tools
○ Recommended solution that is actively developed and promoted within DHIS2

ecosystem.
● dhis2-tools-ng (bash) https://github.com/bobjolliffe/dhis2-tools-ng

○ Bash script implementation (hosted outside of DHIS2 organisation for historical
reasons). It is still supported and used where Ansible is not an option.

● Docker
● Kubernetes

The application is formed of two primary components: a Java web application intended to be
hosted by Apache Tomcat 9 and a PostgreSQL database. As previously mentioned in the
application architecture audit this is a monolithic application rather than an architecture using
microservices. This monolithic architecture does not lend itself to taking advantage of the
features of Kubernetes and a 3-tier architecture
(https://www.ibm.com/topics/three-tier-architecture) would be better suited.

The DHIS2 team provided feedback that through use of the DHIS2 Android SDK, to enable
organisations and users to create their own mobile applications, their solution can fully reflect a
3-tier architecture .

The ability to quickly deploy using Docker for development and testing purposes has value and
Docker is commonly used for this purpose but the learning curve and infrastructure investment
required between Docker and a Kubernetes cluster are vastly different.

Manual Installation Method

The review of the manual installation method is based on the instructions published on the
DHIS2 documentation website2. DHIS2 appears to be a flexible application, however this review
will focus on the CRVS use case.

Test Environment Deployment Overview

These instructions recommend the Ubuntu 18.04 LTS operating system, which has been out of
support since May 2023 unless ESM support is paid for (available until April 2028). Ubuntu
18.04 shipped with Tomcat 9, and an attempt to use Tomcat 10 failed (it is EOL as of September
2022), and so to ensure that an in-support system was deployed for testing the deployment
used Debian 11 which has the end of security support scheduled for July 2024. Tomcat 9 and
PostgreSQL 13 were both installed from the official Debian packages.

2

https://docs.dhis2.org/en/manage/performing-system-administration/dhis-core-version-master/installation.
html (Archive: https://archive.ph/fYCIe)

DHIS2 Evaluation Report

https://github.com/dhis2/dhis2-server-tools
https://github.com/bobjolliffe/dhis2-tools-ng
https://www.ibm.com/topics/three-tier-architecture
https://docs.dhis2.org/en/manage/performing-system-administration/dhis-core-version-master/installation.html
https://docs.dhis2.org/en/manage/performing-system-administration/dhis-core-version-master/installation.html
https://archive.ph/fYCIe

DHIS2 team provided feedback on November 28th that, “We support all current Ubuntu LTS
releases, including 20 and 22. The documentation page which refers only to 18.04 LTS needs to be
updated.”

The installation instructions begin with creating a new unprivileged user for running DHIS2 and
configuring the server timezone and locale. These two steps show attention to detail and
consideration of how the system should be deployed in production, rather than just being able to
make it run for development and testing purposes. This is further seen in the steps relating to
tuning PostgreSQL performance and configuration of Tomcat’s memory usage. The instructions
do not just present a list of tunables and the suggested values but also an explanation of each
so that system administrators can decide if the suggested value is right for them, and so that
developers can validate that those values are still useful to suggest generally.

Outcomes

Operation best practices

Host Operating System
As discussed above, the recommended operating system version is out of mainline support,
however the application does not have strong dependencies on any operating system services
and other operating systems are available with security support carrying suitable versions of the
Java runtime and Tomcat server. The Debian operating system, based on the Linux kernel, has
good all-round hardware support and it is unlikely that this would be a restricting factor in the
choice of physical hardware on which to run the application.

We recommend updating the public documentation of supported operating systems to
support the latest, most accurate options.

Database Configuration
The application uses the industry standard PostgreSQL server and does not place any specific
requirements on that server that would preclude the use of a centrally managed PostgreSQL
cluster should an institution have already invested in that infrastructure. Competent
administrators should be readily available for recruitment to manage the PostgreSQL cluster
given the widespread use of the technology.

File Store Configuration
DHIS2 is capable of using AWS S3 to share files between nodes of a cluster, however the
instructions do not indicate a method of specifying an alternative endpoint URL. The AWS S3

DHIS2 Evaluation Report

API is implemented by other tools that can be either self-hosted (e.g. Minio) or may be hosted
as part of a private cloud arrangement. NFS can be difficult to configure in a resilient way and
the use of object storage would remove that issue. Local legislation and regulations may require
that data is stored on systems that are compliant with standards that AWS S3 may not be
compliant with.

OpenID Connect Configuration
DHIS2 supports the OIDC identity layer for single-sign on. While this feature was not configured
or evaluated here, it is good to see that this feature is offered by the solution. This will allow for
seamless single-sign on for users, and allow for conditional access policies such as device
posture or network location to be controlled according to the policies of the organisation or
agency operating the software. Support for “generic” providers is implemented so this feature is
not tied to only specific cloud vendors as is often the case with software claiming to support
OIDC single-sign on.

Database Encryption
Encryption and decryption of fields stored in the database is performed by the Java
Cryptography Extension (JCE), a commonly used cryptography extension to the Java language
that will have received a good degree of scrutiny to identify flaws in the implementation of the
various algorithms. From a review of the codebase, it appears that most strings are encrypted
using AES-128 which should be considered sufficiently strong to protect the kind of data that is
typically entered into a CRVS system. However, some system settings are encrypted using
Triple-DES with a comment that it is due to a bug in Jasypt3. This bug was not investigated here,
but it should be checked if there are any sensitive fields that are being encrypted with Triple-DES
as the algorithm has been considered unsafe for some time. See the Source Code Audit section
for a more extensive discussion on this topic.

Secrets Management
As the test environment has been deployed manually, no prescriptions were made by the DHIS2
documentation about how to manage secrets within the deployment infrastructure-as-code. No
issues were discovered during the deployment that would have precluded the adoption of best
practices for secret management.

Operations Management Review
System Updates
In the manual installation, the language runtime and associated dependencies were installed
from the operating system’s package manager. The Debian package manager, also used by
Ubuntu, provides simple commands to update the system packages and can be configured to
automatically install security patches as they become available.

3

https://github.com/dhis2/dhis2-core/blob/376fc9b874593a9d6a69584bce803a0783e4fe4a/dhis-2/dhis-sup
port/dhis-support-hibernate/src/main/java/org/hisp/dhis/config/HibernateEncryptionConfig.java#L49

DHIS2 Evaluation Report

https://github.com/dhis2/dhis2-core/blob/376fc9b874593a9d6a69584bce803a0783e4fe4a/dhis-2/dhis-support/dhis-support-hibernate/src/main/java/org/hisp/dhis/config/HibernateEncryptionConfig.java#L49
https://github.com/dhis2/dhis2-core/blob/376fc9b874593a9d6a69584bce803a0783e4fe4a/dhis-2/dhis-support/dhis-support-hibernate/src/main/java/org/hisp/dhis/config/HibernateEncryptionConfig.java#L49

Security Announcements
Security issues are announced via the DHIS2 community forums and are tagged for easier
discovery4. An RSS feed is available5 to allow for easy subscription and does not require directly
interacting with the community forums web interface.

Application Updates
Application updates are performed by replacing the WAR file used by the Tomcat server with the
latest release available on the website. This process may be automatable for patch releases,
however for minor releases there can be manual steps required for upgrades. Each minor
release is published with upgrade notes6 which cover both the impact on API users as well as
the necessary manual steps required to complete the upgrade, for example manual SQL queries
that must be executed.

Documentation
System administrator documentation7 is contained within the wider DHIS2 documentation. It
covers installation, upgrading, monitoring, audit, SMS gateway configuration, and user
impersonation for troubleshooting. This documentation does not feel comprehensive or
polished, and doesn’t make reference to the frameworks for deployment, e.g. dhis2-server-tools.

We recommend updating the System Administration documentation to be more
comprehensive.

Translation Support
Internationalisation is a first class feature in DHIS 28. Internationalisation of the user interface is
supported through the use of Java property strings and PO files. Java property files are used
when messages originate from the back-end Java server, while PO files are used for front-end
apps written in JavaScript. Transifex, a robust industry standard translation system, is used to
manage translated strings.

Monitoring and Observability

8 https://dhis2.org/localization/

7

https://docs.dhis2.org/en/manage/performing-system-administration/dhis-core-version-240/installation.htm
l

6 https://github.com/dhis2/dhis2-releases/blob/master/releases/2.37/README.md (Archive:
https://archive.is/QMQSg)

5 https://community.dhis2.org/tag/dhis2-security.rss

4 https://community.dhis2.org/t/new-dhis2-security-tag-for-all-important-security-alerts/45342 (Archive:
https://archive.is/nrQLd)

DHIS2 Evaluation Report

https://dhis2.org/localization/
https://docs.dhis2.org/en/manage/performing-system-administration/dhis-core-version-240/installation.html
https://docs.dhis2.org/en/manage/performing-system-administration/dhis-core-version-240/installation.html
https://github.com/dhis2/dhis2-releases/blob/master/releases/2.37/README.md
https://archive.is/QMQSg
https://community.dhis2.org/tag/dhis2-security.rss
https://community.dhis2.org/t/new-dhis2-security-tag-for-all-important-security-alerts/45342
https://archive.is/nrQLd

DHIS 2 integrates a Prometheus exporter9 that exports a number of metrics from nodes running
the DHIS 2 application:

● DHIS2 API (response time, number of calls, etc.)
● JVM (Heap size, Garbage collection, etc.)
● Hibernate (Queries, cache, etc)
● C3P0 Database pool
● Application uptime
● CPU

Other software components, e.g. PostgreSQL and Redis, will use their own Prometheus
exporters as is best practice. The metrics available for API usage should be sufficient to detect
when service is degraded or failing but may not be helpful in identifying root causes. Combined
with lacking system administrator documentation, this may result in longer outages when they
do occur as it may be necessary to resort to the community forums for answers.

Backups and Disaster Recovery
Backups for DHIS2 consist of a dump or snapshot of the PostgreSQL database and a clone or
snapshot of the data directory or object storage backend. The system administrator
documentation does not include information about disaster recovery procedures but does give
information on which data must be backed up in order to be able to recover. This would be an
area for improvement in the future. The lack of this documentation has led other users to ask for
help on this topic in the community forum10.

Production Deployment Guidance

Hardware Requirements
An in-country production deployment of DHIS 2 is likely to be deployed in a Tier 2 datacenter due
to the unavailability of higher tier data centres in the target regions. These data centres will
provide rackspace, may provide access to transit providers or provide a managed uplink, and will
have partially redundant power and cooling. Uptime will typically be better than 99.5%, however
the application is designed for intermittent connectivity in mind and so interruptions to
connectivity should not impact the operation of the system. Interruptions to power and cooling
would be more likely in this environment than in higher tier datacenters and so the application
should use a robust approach to data transactions that can maintain consistency through power
events. These considerations are not unique to DHIS 2 and will be applicable to all the vendors
assessed in this project.

Server hardware will be required to run the 3 components of the application: reverse proxies,
application servers and database servers. The Redis component may be co-located with the

10 https://community.dhis2.org/t/options-for-backing-up-dhis2/52799/2 (Archive: https://archive.is/8BJld)

9

https://github.com/dhis2/wow-backend/blob/master/guides/monitoring.md#dhis2-monitoring-configuration
(Archive: https://archive.is/dVKJd)

DHIS2 Evaluation Report

https://community.dhis2.org/t/options-for-backing-up-dhis2/52799/2
https://archive.is/8BJld
https://github.com/dhis2/wow-backend/blob/master/guides/monitoring.md#dhis2-monitoring-configuration
https://archive.is/dVKJd

application servers or with the database servers. The servers should have redundant power
supplies with at least one supply being connected through a UPS battery backup system.

Further specifics will depend on the scale and nature of the exact deployment, but it will be
important to consider:

● Target uptime
● Likelihood of power interruption
● Likelihood of network connectivity interruption
● Environmental factors that may affect MTBF for hardware
● Storage requirements including backups and off-site backup storage

Network Architecture

We recommend that at least a stateful firewall is used to protect the IP subnet on which the
cluster is deployed and that that subnet should be isolated at layer 2, either by VLAN or
physical layer separation

We recommend that at least a stateful firewall is used to protect the IP subnet on which the
cluster is deployed and that that subnet should be isolated at layer 2, either by VLAN or physical
layer separation. For internal communication inside the cluster, a separate cluster subnet should
be utilised if possible, without the ability to route to and from the global Internet from that
subnet. In addition, the firewall may provide VPN access to authenticated users to access the
servers by SSH and to protect the communication between the server cluster and the backup
server.
If possible, controlling access between the reverse proxy servers, the application servers and the
database cluster with ACLs will provide further security benefits by preventing lateral
movement. Using TLS to secure connections between the three clusters will also reduce the risk
of data leakage through physical attacks on the infrastructure or compromise of the network
hardware.

Secrets Management

We recommend that Secrets should be maintained in a password manager and passed to the
deployment tools at runtime

The environment that has access to the secrets should be tightly controlled. Mozilla's sops may
be used to encrypt the relevant secrets although other systems are available. An Ansible vars
plugin (community.sops.sops_vars) is available to load the variables and decrypt them at the
time that the playbook is run.

DHIS2 Evaluation Report

Final Report and Recommendations

Overall Findings
🟢 Positive.

The DHIS2 solution is highly adaptable, capable of being customised to suit a variety of
use cases. Its extensive configurability and the developers' efforts in adding multiple
extension points for new functionalities suggest it could be effectively transformed into
a robust Civil Registration and Vital Statistics (CRVS) system. However, this specific
functionality is not currently available and would need to be developed before the
system could be adopted for CRVS purposes. The interaction with the DHIS2 team has
been productive, including a video call in April with key team members, the
establishment of a group chat on Slack, and ongoing email communication. They have
been active reviewers and commentors throughout this evaluation process. The skills
and knowledge of their various team’s are deemed adequate for the evaluation process.

The initial interactions with the DHIS2 team were promising, beginning with a kickoff
call and followed by active communication through a Slack channel. While a live demo
could not be arranged due to scheduling conflicts, valuable information was gleaned
from the team's YouTube videos and recordings of their annual conference (#dac2023),
which provided insights into the system's capabilities and future plans. The recent
release of new versions of DHIS2 and the Android app further highlights the system's
ongoing development. While no major blockers have been identified, there is a need to
understand better how user roles and flows would integrate with a CRVS
implementation of DHIS2. The DHIS2 architecture is three-layered, web-based, and
Java-written, with extensive documentation and resources available, including impact
stories, use cases, training videos, and a developer portal. The solution's open-source
nature and the community's active involvement in its development are also notable.
Security remains a critical aspect, with the DHIS2 team transparently handling
vulnerabilities and security updates.

The DHIS2 codebase and its security posture have been assessed positively. The
backend, written in Java using the Spring Framework, aligns with industry standards for
Java-based web applications and demonstrates a strong track record in stability and
security patching. The frontend, developed in Javascript with the React library, contrasts
with the backend's monolithic structure by being divided into multiple applications that
are installable and loadable on demand.

DHIS2 Evaluation Report

The project exhibits robust automated test coverage, and the development team
adheres to best practices in feature implementation and testing. A notable aspect of
DHIS2 is its proactive approach to security. The developers respond promptly to security
concerns and follow best practices for patching issues. This is evidenced by the
maintenance of a security dashboard on GitHub, which facilitates issue disclosure by
security researchers and provides implementers with necessary information to address
security issues.

In terms of security concerns, the analysis revealed no major issues with the source
code of DHIS2. Only minor issues were identified, none of which were of high or critical
severity. To conduct this assessment, the team reviewed the application source code,
set up a development instance following the project’s documentation, and conducted
in-depth probes into known web application problem areas, guided by the OWASP Web
Security Testing Guidelines. Additionally, a Software Bill of Materials (SBOM) was
created for the DHIS2 Docker image, and a manual review of third-party dependencies
was performed, further solidifying the security evaluation of the DHIS2 system.

The overall impression of the DHIS2 architecture and its extensibility is notably positive.
With nearly two decades of active development, DHIS2 is built using well-established
languages and tools that have proven reliable over time. The platform’s consistency in
maintaining a biannual release schedule and its sustained adoption and incremental
improvements underscore its strong technological foundation. Originally designed for
healthcare data collection and analysis, DHIS2’s high configurability has enabled its
application in diverse fields such as education, logistics, and human resources.
However, for use in UNICEF's CRVS (Civil Registration and Vital Statistics) projects,
significant customization would be required. Therefore, the architectural audit is
primarily focused on assessing DHIS2’s configurability and extensibility to meet these
specific needs.

Since the DHIS2 Evaluation Report will be public, all publicly disclosed issues remain in the
published version of our report and anything we feel are sensitive or detrimental to the security
of the solution or its users have moved to a separate Annex which will remain private.

DHIS2 Evaluation Report

Area of
Evaluation

Readiness Impact Comments

Evaluation
Aspect

General readiness
/ fitness of
solution in specific
area

Affect that readiness has on viability of
solution as part of this evaluation

Any summary thoughts
on each area

Source Code
Security

Positive/ Ready The DHIS2 codebase and its
security posture have been
assessed positively.

See 7 findings and
recommendations.

Application
Architecture

Positive/ Ready The DHIS2 architecture and its
extensibility is notably positive.

Must consider
additional
customization and
integration required
to fully support CRVS
requirements.

Penetration
Testing

Positive/
Pending
resolution of
high issues

While high issues were found, these
are largely in deployment
configuration, and not faults in the
core application.

Ongoing testing,
scanning and
vigilance is
necessary to ensure
a secure solution.

DevSecOps Positive/ Ready The DHIS2 deployment tools and
guides were usable and functional.

See
recommendations
related to updated
documentation and
deployment
information.

Actionable Recommendations

● General Recommendations
● Documentation

○ Training and Documentation: Provide comprehensive training and documentation
for all developers on the importance of input sanitization and the specific
methods to be used in this application. This is particularly important for
third-party developers who might not be familiar with the application's security
practices.

○ The system administrator documentation does not include information about
disaster recovery procedures but does give information on which data must be
backed up in order to be able to recover. This would be an area for improvement

DHIS2 Evaluation Report

in the future. The lack of this documentation has led other users to ask for help
on this topic in the community forum.11

○ We recommend updating the public documentation of supported operating
systems to support the latest, most accurate options.

● Source Code
○ Findings 1: DHIS2 provides or supports an alternative header for user IP address

identification, such as X-Real-IP, and/or updates its documentation to use the
nginx http_realip module and iterates the importance of correctly defining trusted
proxy addresses to prevent IP spoofing.

○ Findings 2: DHIS2 improve the installation documentation to emphasise the
importance of configuring CORS allowlisting

○ Findings 3: It is strongly recommended to migrate to a more secure encryption
algorithm like AES and to implement a comprehensive encryption strategy that
includes secure key management practices.

○ Findings 4: Regular Code Reviews: Implement regular code reviews and security
audits to ensure that input sanitization is consistently applied across the
application, especially in parts of the codebase developed by external
contributors.

○ Finding 5: We recommend a more stringent policy: the use of
dangerouslySetInnerHTML in an application should be grounds for
disqualification from the App Hub, with exceptions only considered on a
case-by-case basis.

○ Finding 6: We recommend the App Hub should adopt a more stringent policy for
submissions:

i. Rejection of External Assets by Default: Applications that rely on external
scripts or stylesheets should be rejected by default. This policy reduces
the risk of third-party vulnerabilities and ensures a higher degree of
control over the application's content.

ii. Disallowing 'unsafe-inline': The policy should explicitly disallow the use of
'unsafe-inline' in CSP directives. This measure is crucial in preventing the
execution of inline scripts and styles, which are common vectors for XSS
attacks.

iii. Case-by-Case Exceptions: Exceptions to these rules should be granted
only in specific, justified cases. Developers seeking exceptions must
provide comprehensive documentation and justification for their
requirements. Applications requesting an exception must undergo a
thorough security review to ensure that the use of external assets or
'unsafe-inline' elements does not compromise the application's security.

○ Finding 7: As a general recommendation, the SameSite attribute should be
explicitly set to 'Lax'.

● Application Architecture

11 https://community.dhis2.org/t/options-for-backing-up-dhis2/52799/2 (Archive: https://archive.is/8BJld)

DHIS2 Evaluation Report

https://nginx.org/en/docs/http/ngx_http_realip_module.html
https://community.dhis2.org/t/options-for-backing-up-dhis2/52799/2
https://archive.is/8BJld

○ Significant customization would likely be necessary if this project were adopted
for UNICEF’s CRVS needs.

● Penetration Testing
○ There are a number of critical, high and medium issues to review, verify and fix.

● DevSecOps
○ Recommendation: We recommend that at least a stateful firewall is used to

protect the IP subnet on which the cluster is deployed and that that subnet
should be isolated at layer 2, either by VLAN or physical layer separation

○ Recommendation: Secrets should be maintained in a password manager and
passed to the deployment tools at runtime

Closing
DHIS2 is a well-established solution with a strong network of developers and users and a history
of delivering production-quality code.   During our evaluation we found DHIS2 to be extensible
and adaptable at the code-level. It is also a highly-user-configurable data collection and analysis
tool, with almost every aspect of DHIS2 configurable via the UI. The application will need
configuration to be used as a CRVS solution, and the implementing party may require significant
resources to set up the application, understand the workflows and fields necessary to “capture”
data and ensure proper data flows and validation. It may also be desirable to build a custom
Android app to capture data, depending on the requirements for mobile usage. Additionally,
updated CRVS-specific documentation would be needed to successfully customise and secure
this solution as a CRVS option for UNICEF.

Our evaluation does not dive deeply into the breadth of community networks, training/tutorial
academies, government relations and policy guidance required for a successful CRVS rollout.
We highly recommend UNICEF pursue an understanding how user roles and flows work with a
CRVS implementation of DHIS2 before adopting. Some of these questions we will address
during our Stream 2 research, however, at a glance DHIS2 does provide support in many of
these areas.

Overall, we find the DHIS2 solution to have a long history of successful implementations with a
robust, engaged group of contributors and team members. It is an open-source solution,
developed transparently, with open documentation, issue tracking, bug reporting and auditing.
DHIS2 has many of the right “nuts and bolts'' necessary to build a well-rounded, integrated CRVS
solution. If UNICEF has a team of knowledgeable people to explore the codebase and configure
the remaining custom pieces necessary to make a CRVS system integrated with DHIS2, then we
believe it has great potential.   Our team approves DHIS2 as a viable solution option when
integrated with a CRVS system. We have enjoyed reviewing the DHIS2 solution.

DHIS2 Evaluation Report

Appendix
Website: https://dhis2.org/
Documentation link: https://dhis2.org/resources/
Developer portal: https://developers.dhis2.org/
Resources page (including developer support): https://dhis2.org/resources/
Academy link: https://dhis2.org/academy/
Case Studies: https://dhis2.org/in-action/

Rwanda use case of a deployed DHIS2 eCRVS solution:
https://dhis2.org/rwanda-crvs-eir-integration/

■ For a full list of impact stories and use cases visit their website:
https://dhis2.org/category/impact-stories/

■ Explore an interactive map visualising implementations of DHIS2 around
the world, on the DHIS2 In Action page on their website:
https://dhis2.org/in-action/

Github issue list for core DHIS2 codebase: github.com/dhis2
PDF reports of findings from Manual Penetration and Vulnerability Scans:

Guardian Project DHIS2 - Pen Test and Security-Scan-Report - 121323.pdf
Software Bill of Materials (SBOMs):
https://drive.google.com/file/d/1Tk_W687hjol0GDMbr4mNjI7u5-_pGecx/view?usp=sharin
g

DHIS2 Evaluation Report

https://drive.google.com/file/d/1_qWuImh-t6TJBREMKNM1Z1ky3pbfFMHP/view?usp=drivesdk
https://dhis2.org/
https://dhis2.org/resources/
https://developers.dhis2.org/
https://dhis2.org/resources/
https://dhis2.org/academy/
https://dhis2.org/in-action/
https://dhis2.org/rwanda-crvs-eir-integration/
https://dhis2.org/category/impact-stories/
https://dhis2.org/in-action/
https://github.com/dhis2
https://drive.google.com/file/d/1Tk_W687hjol0GDMbr4mNjI7u5-_pGecx/view?usp=sharing
https://drive.google.com/file/d/1Tk_W687hjol0GDMbr4mNjI7u5-_pGecx/view?usp=sharing

