


New Release Statement
July 2024

This assessment was completed and reviewed with the OpenCRVS team in September
and October 2023. Since then, the OpenCRVS team has diligently worked on
implementing the recommendations from this assessment along with feedback from
system integrators involved in the OpenCRVS Implementation Partner Programme and
other architecture, infrastructure and deployment considerations. While we cannot
confirm full resolution at this time, the responsiveness of the OpenCRVS team and the
release notes from versions 1.4 and 1.5 of the software indicate that the
recommendations have been taken seriously and likely implemented. Numerous
technical enhancements have been made to the platform, and they are now about to
release OpenCRVS v1.5.0
(https://documentation.opencrvs.org/general/releases/v1.5.0-release-notes).
Furthermore, a number of issues have been addressed or resolved since our
assessment. You can find a table of addressed issues in this reports Annex.

OpenCRVS Evaluation Report 2023/2024

1

https://www.opencrvs.org/resources/implementation-partner-programme
https://documentation.opencrvs.org/general/releases/v1.5.0-release-notes
https://documentation.opencrvs.org/general/releases/v1.5.0-release-notes


Evaluation Report
Performed by Guardian Project
Final Report, September 2023
Solution Name and Version: OpenCRVS, Version 1.2.0 (and v1.3.0 for Pen Testing)

The evaluation of the OpenCRVS solution by Guardian Project in 2023 is now a publicly available
document under CC-BY copyright.

About Guardian Project

With 15 years of experience in the Internet Freedom space, Guardian Project is dedicated to
building apps and technologies prioritising the safety and protection of those we work with. Our
core values include security, privacy, and transparency, reflected in all our developments.

Relevant Expertise
Our work at Oliver+Coady, inc, via Guardian Project, has always been focused on the human
rights and humanitarian context, aiming to bend technology to better serve people and
communities whose data and digital communications are at higher risk of being exploited and
used against them. Over the last 15 years, we have provided security and privacy-focused
software architecture, development, and operational deployment services across the human
rights and humanitarian technology space. We have experience managing complex multi-year,
multi-million dollar technical projects with many stakeholders, and hundreds of thousands to
millions of end-users.

For over a decade, we have also been heavily involved in open-source software communities, in
particular those focused on privacy-enhancing technology, security-by-design and the
minimization of tracking by third-parties. We have worked within projects that are part of Debian,

OpenCRVS Evaluation Report 2023/2024

2

https://creativecommons.org/licenses/by/4.0/


Tor Project, Mozilla, Android, and more. We also lead and nurture our own open-source projects
and communities, such as Clean Insights, F-Droid, and ProofMode.

Our DevOps team has worked to define a best-of-breed approach to supporting development
and deployment of secure and privacy services protecting high-risk data. We have experience
deploying on Amazon Web Services, which is ISO certified for Cloud Security and Data
Protection, Microsoft Azure Cloud, Fastly, and other independent hosting providers. For network
security purposes, we use private virtual intranets and web application firewalls to secure
access to our services. When possible, all content stored is encrypted using cryptographic keys
generated using end-to-end encryption protocols, and that are only resident in the user’s device
or browser. We also take a privacy-preserving approach to measurement - in most cases, no full
IP addresses are logged by our servers or analytics services, only country level information.
Access logs are stored for the minimal amount of time necessary to operate the service, and are
not shared with any third-party. All internal and external communications within our team are
encrypted (TLS, VPN, SSH, OpenPGP, Signal, Matrix). All of our services require two-factor
authentication access with hardware token, from authorised devices.

Implementation of regular security audits and updates ensure that security standards are
upheld. In addition to our own internal auditing and manual and automated testing, we use
reputable third-party penetration “Red Team” testing teams to test the security of our services
on an annual basis or after major releases.

OpenCRVS Evaluation Report 2023/2024

3



Table of Contents

Glossary of Terms 2
Evaluation Summary 4

Executive Summary 4
Summary of the OpenCRVS Solution 5
Elements of the Solution 7
Threat and Risk Assessment 13

Initial Assessment Results 15
Initial Thoughts 15

General Impressions 15
Key Team Members and Roles 16
Summary of Initial Interactions 16
Concerns and Blockers 16

Review of Assets 17
Source Code Security Audit 19
Processes and Tools 20

Research and document the complete “Software Bill of Materials” (SBOM) 20
Open-Source Software (OSS) vulnerability scanning 20
Static application security testing (SAST) scanning 20
Summary of test environment setup, steps taken to complete analysis 21
Summary of communication with vendor related to disclosures and direct feedback 21
Status of any mitigations, patches, updated releases 21

Outcomes 22
Readiness of the source code for being enhanced by a third party 23

Application Architecture Audit 24
Summary of test environment setup, steps taken to complete analysis 25
Summary of communication with vendor related to disclosures and direct feedback 25
Outcomes 26
Document a shared, holistic view of the structure of the application 26

Microservices Architecture 26
Research and document the complete “Software Bill of Materials” (SBOM) regarding
components, database, APIs, and third-party libraries 28
Third Party Technology Choices and Implications on Architecture 28
Open source dependencies which are automatically provisioned alongside the OpenCRVS
Core 28

OpenCRVS Evaluation Report 2023/2024

4



Conclusions 31
External Third Party Services 32
Ease of user interface for setting roles and status visibility 35
Evaluation of maintainability, performance at scale, re-usability, flexibility. 35

Further Remarks on Application Extensibility 35
Maintainability and Performance 36

Penetration Testing Audit 36
Status 36

Details of process, setup, tools utilised 36
Summary of test environment setup, steps taken to complete analysis 41
Summary of communication with vendor related to disclosures and direct feedback 41
Status of any mitigations, patches, updated releases 42

Outcomes 42
Feedback 44

DevSecOps Analysis 44
Status 44
Summary of test environment setup, steps taken to complete analysis 44
Outcomes 45
Software development operation best practices 45
Review of operations management from a system administrator perspective 45

Network Security Considerations 45
Key and Secret Management 47
Deployment maintainability 48

Guidance on production deployment 50
Final Report and Recommendations 51

Overall Findings 52
Actionable Recommendations 54
Closing 56

Appendix 57
Annex 58

Glossary of Terms
Listing of combined terminology from both general project space, along with product developer and
evaluation specific terminology

OpenCRVS Evaluation Report 2023/2024

5



● Civil Registration and Vital Statistics (CRVS): A well-functioning civil registration and
vital statistics (CRVS) system registers all births and deaths, issues birth and death
certificates, and compiles and disseminates vital statistics, including cause of death
information. It may also record marriages and divorces.

● Software Bill of Materials (SBOM): list of all the open source and third-party
components present in a codebase. An SBOM also lists the licences that govern those
components, the versions of the components used in the codebase, and their patch
status, which allows security teams to quickly identify any associated security or licence
risks.

● Digital Public Good (DPGs): are public goods in the form of software, data sets, AI
models, standards or content that are generally free cultural works and contribute to
sustainable national and international digital development. Several international
agencies, including UNICEF and UNDP, are exploring DPGs as a possible solution to
address the issue of digital inclusion, particularly for children in emerging economies.

● Tier 2 Data Center: A Tier 2 data centre has a single path for power and cooling and
some redundant and backup components. It has an expected uptime of 99.741% (22
hours of downtime annually).

● Penetration Test (Pen Test): an authorised simulated cyberattack on a computer
system, performed to evaluate the security of the system. The test is performed to
identify weaknesses (also referred to as vulnerabilities), including the potential for
unauthorised parties to gain access to the system's features and data, as well as
strengths, enabling a full risk assessment to be completed.

● DevSecOps (Development, Security, Operations): a practice in application security that
involves introducing security earlier in the software development life cycle. It also
expands the collaboration between development and operations teams to integrate
security teams in the software delivery cycle and workflow of continuous integration and
continuous delivery (CI/CD).

● Static Application Security Testing (SAST): is a set of technologies designed to analyse
application source code, byte code and binaries for coding and design conditions that
are indicative of security vulnerabilities. SAST solutions analyse an application from the
“inside out” in a non running state. One of the most mature application security testing
methods in use, is white-box testing, where source code is analysed from the inside out
while components are at rest.

● Microservices: an approach to application development in which a large application is
built from modular components or services. It enables the continuous
delivery/deployment of large, complex applications and consists of loosely coupled
services which implement business capabilities.

● FHIR (Fast Healthcare Interoperability Resources): is a standard for healthcare data
exchange, published by HL7 (Health Level Seven International), a standards development
organisation for healthcare IT. It is designed to enable the exchange of healthcare

OpenCRVS Evaluation Report 2023/2024

6



information between different healthcare IT systems, including electronic health record
(EHR) systems, healthcare applications, and mobile devices.

● Software as a Service (SaaS): which means software is hosted by a third-party provider
and delivered to customers over the internet as a service. It is a software licensing and
delivery model in which software is licensed on a subscription basis and centrally
hosted. An independent software vendor (ISV) may contract a third-party cloud provider
to host the application, which is hosted on remote servers, maintained and updated by
the service provider, and made available to customers via web browsers, mobile apps
and APIs.

● Gitflow: is an alternative Git branching model that involves the use of feature branches
and multiple primary branches. Fundamentally, it is a branching strategy aimed at
simplifying release management by isolating your work into different types of git
branches.

● Comma Separated Value (CSV): Data stored in a plain text, spreadsheet-like format, with
columns delimited by a comma other defined character token

● JavaScript Object Notation (JSON): A lightweight data-interchange format. It is easy for
humans to read and write. It is easy for machines to parse and generate.

● Logical Volume Management (LVM): It is a system of managing logical volumes, or
filesystems, that is much more advanced and flexible than the traditional method of
partitioning a disk into one or more segments and formatting that partition with a
filesystem.

● Secure Shell (SSH): A network protocol that gives users, particularly system
administrators, a secure way to access a computer over an unsecured network.

Evaluation Summary

Executive Summary
The following evaluation of OpenCRVS was conducted by Guardian Project over the course of
Spring and Summer 2023. The evaluation was designed to provide a comprehensive review of
the OpenCRVS solution through the following areas:

● Initial Assessment of Solution, Assets, and Documentation
○ Meet with and interview the product team, receive a typical walkthrough

demonstration of the system, gather all available documentation, reports, source
code, tools, and complete an overall review of the “fitness” of the solution and
readiness for proceeding through the rest of the audit process

● Source Code Security Audit

OpenCRVS Evaluation Report 2023/2024

7



○ Uncover flaws in the application (bugs, security weaknesses, extensibility,
maintainability...), and evaluate the readiness of the source code for being
enhanced by a third party

● Application Architecture Audit
○ Review the structure of the application, on how the different components,

database, APIs, and third-party libraries interact within the code under the lens of
maintainability, performance at scale, re-usability, flexibility, cyber security, and
data privacy.

● Penetration Testing Audit
○ Evaluate the holistic approach in terms of cyber security, through active and

passive security scanning of vulnerabilities, manual penetration testing, security
policies analysis, Analysis of history of public vulnerabilities, analysis of security
guidelines/documentation (including resilience and recovery recommendations),
and more.

● DevSecOps Analysis
○ Software development operation best practices and from the operations

management from a system administration perspective, and provide guidance
for keeping in production a solution in a stable, updated, and secure perspective.

Overall we find the OpenCRVS product to be stable and ready for implementation. It has great
documentation for implementers, is interoperable with many e-government solutions, focuses
on real-world workflows and a team ready to help. The reliance on third-party dependencies are
commonplace and the OpenCRVS choices of microservices makes for a flexible and extensible
solution.

We found a few areas for improvement, which are outlined in this document, but they do not
detract from the overall positive evaluation of OpenCRVS. OpenCRVS is new to the CRVS market
(debuted in 2019). It is only a “version 1” generation release, and may not be as flexible or
feature rich as other potential solutions. It does benefit from a laser focus on the eCRVS
functionality, modern and clean architecture, and an extremely organised and well-run public
open-source project. When thinking about how this might be deployed and maintained
throughout the world, the idea that a single unified upstream codebase could be improved and
updated, and then pushed out to downstream instances, is very attractive and beneficial.

To conduct the OpenCRVS evaluation we read publicly available documentation, visited their
website and supporting resources (Github, documentation site, etc), we deployed our own
instance and tested for vulnerabilities and dependencies, created a SBOM for the codebase,
audited the architecture, deployed the software in AWS and ran multiple variations of
vulnerability scans and penetration tests. We had ongoing communications with the OpenCRVS
team, coordinated information and asset sharing, discussed openly any issues we found and
OpenCRVS Evaluation Report 2023/2024

8



maintained communication via Slack chat throughout the process. A number of key issues
identified have already been addressed by and even resolved by the OpenCRVS team during this
process.

Summary of the OpenCRVS Solution

“OpenCRVS is an open-source digital solution for civil registration, designed specifically for
low-resource settings and available as a Digital Public Good,” as stated on their website. It is
part of the “no one left behind” initiative ensuring all people on the planet are registered.
OpenCRVS is intended to be interoperable with a government’s infrastructure, which can be
deployed at the community level. The goal is that other vendors (ID contractors, governments)
will implement and deploy the application themselves.

First imagined eight years ago by Plan International, OpenCRVS was designed to resolve current
issues with Civil Registration and Vital Statistics (CRVS) systems such as being hard to use and
administer services, not being accessible for low-resource settings, and often incompatible with
other government technologies. The OpenCRVS team set out to develop and design a smoother
and more user-friendly product.Recognizing how much of an impact their product will have on
people's lives, the team created an open-source, human-centred design solution that fit the
needs of both urban and rural communities. Additionally, since any CRVS program collects data
that is PII (Personally Identifiable Information) centric, developing a secure and safe system is
at the forefront of their decision making.

In 2017, the OpenCRVS prototype was demonstrated globally. In 2018, they implemented their
first proof of concept in Bangladesh and 2019, followed with a proof of concept in Zambia. And
in 2020 they ran their first pilot program in Bangladesh focusing on both rural and urban
deployments. In 2022, they publicly released version 1.1 of OpenCRVS. All of the source code,
releases, and documentation are available via their website and Github. This evaluation began
by reviewing version 1.2.0 of OpenCRVS and then the subsequent updates and bug fixes
implemented in v1.2.1 which is the current release. To date, up to 1.2 of the application has
been Penetration tested by an independent third party certified to UK government standards. We
will be doing final review and pen testing on v1.3 which is nearing public release as of July 2023.

The OpenCRVS team has been very receptive to the evaluation process, and is open to learning
and receiving feedback. They have a team posture acknowledging there is always something to
improve upon. And with each deployment they learn and adapt.

Designed for a target audience working in low-resource settings, OpenCRVS is meant to be
scalable and configurable to fit the needs of a community. The team seeks to design a solution
that speaks to the challenges of people all over the world. They work closely with communities
OpenCRVS Evaluation Report 2023/2024

9

https://github.com/opencrvs/opencrvs-core/releases/tag/v1.2.0
https://documentation.opencrvs.org/general/releases/v1.2.1-release-notes


to develop their solution and continue iterations and improvements every month. They hope
OpenCRVS responds to real-life scenarios with a UI (user interface) that helps people do their
jobs, while balancing local capacity.

When reviewing the publicly available documentation for OpenCRVS, we found the website to be
friendly, engaging and informative. At a high-level one can understand the product and its
purpose. On the case studies page one can engage with the stories of deployments, and hear
from those who have been impacted by the OpenCRVS application.

● Website: https://www.opencrvs.org/
● Documentation link: https://documentation.opencrvs.org/
● Case Studies: https://www.opencrvs.org/about-us/case-studies

Elements of the Solution

OpenCRVS is intended to be part of a nation’s foundational identity ecosystem and therefore
must account for various deployment environments, implementing partners, technology
infrastructure and digital literacy levels. It is designed to be highly accessible and available, to
ensure it is functional even in remote areas.

Past CRVS systems were deemed not very easy to implement or use and often didn’t account
for additional user touch-points to help ease the registration process or procedures. Based on
in-depth research and co-design practices, OpenCRVS seeks to consider what real-life scenarios
and workflows can be learned from and then implemented into their solution via design, security
features, or user flows.

Thus, the OpenCRVS application has accounted for a set of roles representing common actors
often involved in civil registration. It also reflects some non-traditional actors which may help
improve registration completion and overall service delivery, like trusted community leaders who
are approved to record vital events within the community. For instance, one OpenCRVS user
representing the Field Agent user role is Maneya Mwansakilwa. She is a nurse providing child
and maternal services within the community, while also working in the Kanyama hospital in
Lusaka, Zambia. She states, “a large number of births occur in the community and these mothers
often do not visit the hospital for services for their babies, they wait for community visits, [...] and
so if this process can be brought nearer to the people, it will do a lot of good to them"
(https://documentation.opencrvs.org/product-specifications/users/examples).

OpenCRVS Evaluation Report 2023/2024

10

https://www.opencrvs.org/
https://documentation.opencrvs.org/
https://www.opencrvs.org/about-us/case-studies
https://documentation.opencrvs.org/product-specifications/users/examples


Other user roles and use cases were found on the website and on the OpenCRVS
documentation site (https://documentation.opencrvs.org/product-specifications/users).
However, there was not a lot of definition around the ‘types’ of people implementing these roles
and what it would look like for them practically (to use the OpenCRVS system in their daily
workflow).

List of user roles from the OpenCRVS documentation site:

Role Responsibilities Types

Field Agent ● Create birth and death
notifications

Healthcare Worker
Police Office
Local Leader
Social Worker

Registration Agent ● Create birth and death
declarations

● Validate and send
declarations for
approval

● Issue certificates
● View performance

statistics

Civil Registration Authority
Employee - Data Entry

Registrar ● Create birth and death
declarations

● Approve and register
declarations

● Issue certificates
● View performance

statistics

Civil Registration Authority
Appointee

National Registrar ● Create birth and death
declarations

● Approve and register
declarations

● Issue certificates
● View performance

statistics

Local System Admin ● Create users

OpenCRVS Evaluation Report 2023/2024

11

https://documentation.opencrvs.org/product-specifications/users


● Edit users

National System Admin ● Config management
● Create users
● Edit users

Performance Manager ● View performance
statistics

To understand the OpenCRVS product more deeply, the team provided us with a live demo over
video conference screen sharing. The demo implementation takes place in an imaginary,
low-resource country named Farajaland, where OpenCRVS is deployed at the district level.
Farajaland is divided into four districts with multiple provinces, but has one office per district.
Within each office there is a registrar assistant & community leader. The deployment is meant to
simulate a rural district with low population density who have limited data and mobile phone
coverage. In the demo, they highlighted three new service delivery models which help contribute
to higher completion levels.

The three service delivery models illustrated were:

1) Declaring a vital event at the community level via a community leader
Declaration being a full form with all the mandatory information necessary to register a
vital event and any complementary attachments are sent to the registration office for
review. They are not registering events, but rather capturing vital information. This enables
capturing at the local level and can be completed by any trusted actor who identifies the
birth date (health workers, local leaders, local organisations).

2) Notifications of a vital event from the health facility or hospital through an automated feed
from the health system

Usually partial or minimal information collected. Can’t often attach the necessary
documents needed to ‘authenticate registration’.

3) Direct registration at a District Regional office
All the information collected on site makes the process as simple and fast as possible.

During the demo we understood a little more how user roles are defined within the OpenCRVS
platform and their workflows. We were introduced to three users: a community leader,

OpenCRVS Evaluation Report 2023/2024

12



registration officer and registrar.

● Community leader or field agent–a trusted individual, who can declare the births and
deaths that take place in a community. They can complete the form, attach any
supporting documents and send along the form to the registration office.

● Registration officer- works in the registration office, assists the registrar with reviewing
applicants, inputting data, sending for registration and printing certificates (don’t need to
use this user, but it helps demonstrate the realities of the actual process. In many cases
there is another person, ie the registration agent or officer who actually does the work for
the registrar).

● Registrar–formally appointed by the Civil Registration Authority to register vital events
into the system.

During the demo, we walked through the service delivery model #1, where declaration of a vital
event is done at the community level by a community leader/field agent. The OpenCRVS
interface uses iconography, colours, copy, avatars and a ticket tracking system (tracking when a
ticket is retrieved, viewed or edited) to assist the user in creating their registration report. Based
on community feedback, the OpenCRVS team found it was important to notify mothers (or other
informants) more about the registration process (what's happening, what documents are
needed for verification and why). So, at the beginning of a report, the field agent is encouraged
to send an SMS to the informant. Once a registration report is started, the field agent captures
all the mandatory data they can and attach any documents. This report is then ready for review
by the Registration Officer and/or Registrar.

A benefit of using OpenCRVS is that you can collect data and upload attachments while offline.
When you come back online the system syncs with your collected information. To see how a
registration flows through the system, visit the Status Flow diagram on the documentation site,
which illustrates all the vital event record statuses in OpenCRVS and how it is possible to move
from one to the next
(https://documentation.opencrvs.org/product-specifications/status-flow-diagram).

OpenCRVS is receptive to feedback and has integrated solutions and design considerations
from proofs of concepts into the various registration workflows; low-resource setting
requirements, local capacity and the envisioned goal of making the process of generating a civil
registration report as simple as possible.

The OpenCRVS public good is being considered as a Civil Registration and Vital Statistics
(CRVS) system that records the details of all major life events, such as births, deaths, marriage
OpenCRVS Evaluation Report 2023/2024

13

https://documentation.opencrvs.org/product-specifications/status-flow-diagram


and divorce. Currently the OpenCRVS product only allows for registration of births and deaths.
The team is aware of their need to include marriages and divorces into their product solution to
be CRVS compliant and are working to include these features into their next releases.
OpenCRVS issues product releases every 4 months with 6 months of bug fix (hot-fix) support
(https://documentation.opencrvs.org/general/releases).

Currently, the team’s primary funding is through implementations, which include ongoing
support and maintenance, which can consume limited time and resources. A more sustainable
long-term model would include more core investment and support. Their product roadmap is
published on their documentation site
(  https://documentation.opencrvs.org/general/product-roadmap). Future product releases will
include many new features. Although this set of features are on the OpenCRVS radar, they will
need to determine scope and priority in implementation. While the roadmap exists, there are no
fixed dates defined.

OpenCRVS have detailed their core, support, admin and data functions of their application on
their documentation site:
https://documentation.opencrvs.org/product-specifications/core-functions

Some current features:
● Free and open-source, with no licence fees or ties to specific vendors

○ However, there are a number of other costs that need to be considered when
evaluating the Total Cost of Ownership (TCO) of a digital CRVS system. This
includes the upfront costs to develop and rollout the system at a National scale,
but also the long term costs that will be incurred year-on-year to operate and
maintain the system.

● Interoperable with other e-government systems via the FHIR standard, a documented
JSON API, and webhooks.

○ Support for an open documented interface and data format that another system
(such as DHIS2 or other custom application) could write code against to interact
with the CRVS data. This could be useful for other public health applications,
identity verification for documents, or school registration, and so on. By
supporting FHIR and the other interoperability standards, it makes it possible for
unnamed, unknown future apps to use this data, as authorised.

● Enables new models of civil registration that can help achieve universal registration
○ The 3 service delivery models captured during the demonstration

● Multilingual-English and French languages supported in default
○ Countries have an official language of operations so depending on where it is

implemented localization is possible
○ R to L is not currently supported

OpenCRVS Evaluation Report 2023/2024

14

https://documentation.opencrvs.org/general/releases
https://documentation.opencrvs.org/general/product-roadmap
https://documentation.opencrvs.org/product-specifications/core-functions
https://hl7.org/FHIR/


● Optimised for mobile-centric communities
● Officially available as a Digital Public Good
● Detailed access controls based on different user roles
● Multi-Layered Security Capabilities through

○ Application firewalls
○ Network security through TLS/SSL protocols and certificate
○ Database firewall

● Scalable
○ The software is designed in a way that is both modular and able to be deployed

across multiple virtual or physical servers that each can be increased in size and
load capacity as needed. It can be run off a single physical box in a physical
government data center, or run in a corporate cloud, that can scale it up or down
on demand.

● Quick & Easy to configure (less than 1 week)
○ Notes on how to set up an instance are detailed on their doc site:

https://documentation.opencrvs.org/setup/1.-establish-team
● Ability to capture data offline, then system syncs when re-connected to the internet

○ This is achieved even without native mobile or desktops apps, through use of
Progress Web App architecture available in modern web browsers

● Two Factor Authentication (2FA) required for login
○ Currently SMS authentication is the only way to authenticate. 2FA codes are sent to

the user's mobile device in order to log in. To help prevent brute force attacks,
these codes time out after 5 minutes.

○ Exploring other alternatives

Features to be included in the next releases of OpenCRVS:
● Marriage and divorce registration

flows
● Foetal death registration flow
● Web portal for direct public services
● Certified copy application flow
● Verify a record (API)
● Verify a certificate (via QR code)
● Vital statistics export
● Printed performance management

reports
● Advanced configuration of forms,

certificates, application settings and
communications (during live
operations)

● Advanced deduplication
● Integrated payments
● Delegated authority
● Validation overrides and approval

(where outside normal bounds)
● Integrated learning modules
● Legacy data import support (digital /

paper)
● Person centric views of vital events

data
● Social protection system

interoperability

OpenCRVS Evaluation Report 2023/2024

15



Threat and Risk Assessment
Current understanding of the environment threats and risks that the evaluation is being
considered within, with some examples of threats being considered under this evaluation.

Threat Likelihood Impact Severity Mitigations

Describe the
potential
threat, attack
vector, bad
actor

How likely is it that this
could happen?

What will happen if
the threat/attack is
successful?

How severely
will the
solution
instance be
impacted?

How does the solution
reduce the risk, impact,
and severity of the
attack?

Identity the�
or fraud

Likely Personal data,
including that of
children, is
increasingly in
demand by identity
thieves

Moderate -Multiple roles that limit
the scope of access to
data and capabilities.
-Use of 2 factor
authentication and other
measures to defeat brute
force attacks

Privacy
Violation

Moderately likely Digital transmission,
networked storage
and increased
sharing of birth data
may expose personal
information to
individuals and uses
that are against the
wishes of families
participating in
registration

Minor -Encryption of data on
the network and at rest
-Multiple roles that limit
the scope of access to
data and capabilities.

OpenCRVS Evaluation Report 2023/2024

16



Targeting
based on
personal
characteristics

Very unlikely The ability to rapidly
gather and process
large amounts of
population data
could contribute to
targeted advertising,
other forms of
exploitation, and
targeted physical
threats and violence.

Severe -Multiple roles that limit
the scope of access to
data and capabilities
- Limit in user experience
for mass search and
export

Personal
security
violation or
exploitation

Moderately likely Registration
happening outside a
controlled
institutional
environment, such as
a hospital or
registrar’s office,
could place families
at risk of physical
violence and
economic or other
exploitation by
registration agents.

Severe -Easy access to mobile
interface, even with
limited connectivity,
keeps as much data
reporting “in the
system” and private as
possible
- Focus on defined user
roles, control who has
access to accounts can
help fight corruption and
exploitation

Incorrect or
Insecure
Deployment

Moderately likely Deployment of
services by
unqualified staff or
into unvetted or
untested
environments could
lead to data
exfiltration, watering
hole attacks, and
other harms to the
users and
administrators

Critical - Availability of
deployment docs,
training, and support
- “Platform” approach
creates potential for an
ecosystem of
certified/trusted
partners for deployment
- Transparency of
open-source and
iterative development
means vulnerabilities
and updates can be fixed
and deployed quickly

OpenCRVS Evaluation Report 2023/2024

17



Initial Assessment Results

Initial Thoughts

General Impressions

● We have had very positive interactions and open communication with the OpenCRVS
staff and team.

● We were able to quickly get access to source code, installation information, product
documentation and more, enabling us to begin our work without delay.

● Security Audits
○ Based on the additional detail received in the “OpenCRVS Security Assessment

Reports” #1 and #2 documents (links are provided in the Review Assets portion
of this evaluation), the OpenCRVS team has engaged in effective security audit
practices with external auditors. These reports show that while there were
medium and low-level vulnerabilities discovered (a common occurrence in
audits!), the OpenCRVS team was able to resolve and mitigate the issues within a
reasonable amount of time. From the reports:

○ “The security assessment was conducted in two rounds, first to identify
and report vulnerabilities, and then reassessed to ensure reported
vulnerabilities were resolved.
Already from the results of the first assessment, it was evident that the
OpenCRVS web application had a good security posture. The web
application security fundamentals were sound. However, there were

○ medium and low level security vulnerabilities identified and reported, as
well as informational improvements. In the second assessment these were
verified as resolved.”

● Open-Source Components
○ A number of open source components are used within the application, including

Traefik, MongoDB, ElasticSearch and InfluxDB. These are all well-known
components, actively maintained and with a good security track record. Beyond
their core developers they have an extensive community and it will not be too
difficult to find knowledgeable people to work on resolving any issues with these
components.

● Data Centers and Uptime Considerations
○ OpenCRVS is designed to be deployed in a Tier 2 datacenter due to the

unavailability of higher tier data centres in the target regions. These data centres
will provide rackspace, may provide access to transit providers or provide a
managed uplink, and will have partially redundant power and cooling. Uptime will
typically be better than 99.5%, however the application is designed for

OpenCRVS Evaluation Report 2023/2024

18



intermittent connectivity in mind and so interruptions to connectivity should not
impact the operation of the system. Interruptions to power and cooling would be
more likely in this environment than in higher tier datacenters and so the
application should use a robust approach to data transactions that can maintain
consistency through power events. These considerations are not unique to
OpenCRVS and will be applicable to all the product solutions assessed in this
project.

Key Team Members and Roles

We have been connected with and met a variety of team members from OpenCRVS. We are in
contact via both email and Slack group chat. We are satisfied that the sets of skills and
knowledge represented by these contacts will be sufficient for us to complete our evaluation.

● Director of Product Strategy and Sustainability
● Technical Architect
● Director of Community Development & Engagement
● Marketing and Engagement Team

Summary of Initial Interactions

● Feb 28, 2023- Coordinator made introduction to product solution and evaluator
○ We followed up with a calendar invite for a kickoff meeting and shared the

evaluation timeline with request for evaluation assets/inputs
● March 7, 2023- Kick-Off Meeting with Product Solution Team

○ Followed up with Slack group chat connections, sharing of additional
assets/inputs as requested

● March 14, 2023 - Live Product Demo over Zoom (Raw Notes here:
https://docs.google.com/document/d/17CWjDPqyJZ6s4IBHlLxXgCRratHvSgR-sKimZ9U
edXE/edit?usp=sharing)

● March 29, 2023 - Check-in and API / Component Review with OpenCRVS team

Concerns and Blockers

● We currently do not have any concerns or blockers regarding our ability to move forward
and complete the evaluation process.

● We have begun to form a list of specific questions and lines of inquiry that we have
developed based on our time reviewing the assets (below) and from the live demo we
received. These are presented later in this section.

OpenCRVS Evaluation Report 2023/2024

19

https://docs.google.com/document/d/17CWjDPqyJZ6s4IBHlLxXgCRratHvSgR-sKimZ9UedXE/edit?usp=sharing
https://docs.google.com/document/d/17CWjDPqyJZ6s4IBHlLxXgCRratHvSgR-sKimZ9UedXE/edit?usp=sharing


Review of Assets

Overall project website https://www.opencrvs.org/
Functional architecture shows the logical components of which the system is
comprised:
https://documentation.opencrvs.org/product-specifications/functional-architecture
Technical Architecture:
https://documentation.opencrvs.org/technology/architecture

The technical architecture of OpenCRVS was designed to conform to the
Open Health Information Exchange (OpenHIE) architectural standard and
interoperate using HL7 (Fast Healthcare Interoperability Resources) or
FHIR. FHIR is a global standard application programming interface or
(API) for exchanging electronic health records.

The status flow diagram shows all the vital event record statuses in OpenCRVS
and how it is possible to move from one to the next
https://documentation.opencrvs.org/product-specifications/status-flow-diagram
The different user roles in the system, are defined below, reflect common actors
involved in civil registration services around the world as well as non-traditional
actors that may help improve service delivery
https://documentation.opencrvs.org/product-specifications/users

Example Users:
https://documentation.opencrvs.org/product-specifications/users/example
s

Demo Roles / Logins for Farajaland demo instance:
https://github.com/opencrvs/opencrvs-core#log-into-opencrvs
Plan, Intl, Identifying and addressing risks to children in digitised birth registration
systems:
https://www.ohchr.org/sites/default/files/Documents/Issues/Children/BirthRegistra
tionMarginalized/PlanInternationalGeneva_4.pdf

“This document provides guidance on identifying and mitigating these
risks for implementing government agencies and their partners operating
in low- and middle-income countries. It expands on the model of DBR
developed by Plan International as part of its Count Every Child initiative
and within the context of strengthening civil registration and vital statistics
(CRVS) systems more broadly.”

Open-source project hosted on Github: https://github.com/opencrvs/
opencrvs-core Public

A global solution to civil registration; A digital public good for civil
registration

opencrvs-farajaland Public
OpenCRVS Evaluation Report 2023/2024

20

https://www.opencrvs.org/
https://documentation.opencrvs.org/product-specifications/functional-architecture
https://documentation.opencrvs.org/technology/architecture
https://ohie.org/
https://ohie.org/
https://www.hl7.org/fhir/
https://www.hl7.org/fhir/
https://documentation.opencrvs.org/product-specifications/status-flow-diagram
https://documentation.opencrvs.org/product-specifications/users/examples
https://documentation.opencrvs.org/product-specifications/users/examples
https://documentation.opencrvs.org/product-specifications/users/examples
https://github.com/opencrvs/opencrvs-core#log-into-opencrvs
https://www.ohchr.org/sites/default/files/Documents/Issues/Children/BirthRegistrationMarginalized/PlanInternationalGeneva_4.pdf
https://www.ohchr.org/sites/default/files/Documents/Issues/Children/BirthRegistrationMarginalized/PlanInternationalGeneva_4.pdf
https://github.com/opencrvs/
https://github.com/opencrvs/opencrvs-core
https://github.com/opencrvs/opencrvs-farajaland


An example configuration module for OpenCRVS using a fictional country
opencrvs-mec Public

An example configuration for OpenCRVS using a fictional country
performance-tests Public

Performance tests for OpenCRVS
mosip-mediator Public

This is an example microservice mediator that subscribes to an
OpenCRVS BIRTH_REGISTRATION Webhook.

hearth Public
A fast FHIR-compliant server focused on longitudinal data stores.

Github Issue list for core OpenCRVS codebase
https://github.com/opencrvs/opencrvs-core/issues
Community Forum: https://community.opencrvs.org/

“This is a place for everyone interested in CRVS system strengthening to
engage in discussion and healthy debate to explore how we can move the
dial on civil registration systems globally.”

Case Studies: https://www.opencrvs.org/about-us/case-studies
Product Council discussion “Requirements for Registering a Marriage and
Divorce in OpenCRVS“
https://community.opencrvs.org/t/requirements-for-registering-a-marriage-and-di
vorce-in-opencrvs/167

“We welcome additional contributions to the questions on this Mural
board MURAL 2”

OpenCRVS Interoperability Hackathon
https://www.opencrvs.org/resources/connect/news-and-events/opencrvs-intero
perability-hackathon

“We hosted a briefing session on March 9th for system integrators, ID
vendors, Digital Public Goods and other organisation s interested in
participating in the OpenCRVS Interoperability Hackathon”

https://documentation.opencrvs.org/technology/security
Every release of the OpenCRVS application and infrastructure has been
security penetration tested by an independent, CREST and
CyberEssentials certified 3rd party to UK government standards.
The latest penetration test of OpenCRVS was performed by GoFore -
NORAD's preferred security testing provider.

OpenCRVS Evaluation Report 2023/2024

21

https://github.com/opencrvs/opencrvs-mec
https://github.com/opencrvs/performance-tests
https://github.com/opencrvs/mosip-mediator
https://github.com/opencrvs/hearth
https://github.com/opencrvs/opencrvs-core/issues
https://community.opencrvs.org/
https://www.opencrvs.org/about-us/case-studies
https://community.opencrvs.org/t/requirements-for-registering-a-marriage-and-divorce-in-opencrvs/167
https://community.opencrvs.org/t/requirements-for-registering-a-marriage-and-divorce-in-opencrvs/167
https://app.mural.co/t/newlegacydigital0263/m/newlegacydigital0263/1676447839084/4d299d5f02b289bdf30ca535a8d81e37d3a3dcb8?sender=udf702274d3be0ef88fec4138
https://www.opencrvs.org/resources/connect/news-and-events/opencrvs-interoperability-hackathon
https://www.opencrvs.org/resources/connect/news-and-events/opencrvs-interoperability-hackathon
https://documentation.opencrvs.org/technology/security
https://www.crest-approved.org/
https://www.ncsc.gov.uk/cyberessentials/overview
https://www.ncsc.gov.uk/cyberessentials/overview
https://gofore.com/
https://www.norad.no/
https://www.norad.no/


"Already from the results of the first assessment, it was evident that the
OpenCRVS web application had a good security posture. The web
application security fundamentals were sound."

Security Assessment Report #1
https://drive.google.com/file/d/1TmaH06vpqpTnLJaZzTPYGJE9DOPD0kXn/view
?usp=sharing

Security Assessment Report #2 for verification of mitigation:
https://drive.google.com/file/d/1FhhllHkxy-8HncxgB5aoABlTJ7iD3gRx/vi
ew?usp=sharing

Bangladesh deployment case study:
https://www.opencrvs.org/about-us/case-studies/bangladesh

“The Bangladesh Computer Council found the OpenCRVS implementation
to be highly secure and effective against cyber security threats.”

“Explore our implementation resources to understand how OpenCRVS can be
implemented in different country contexts and the associated costs”
https://www.opencrvs.org/resources/implementation-guidance
Information on a “Proof of Concept” deployment:
https://www.opencrvs.org/resources/implementation-guidance/what-is-a-poc
Guide on “Total Cost of Ownership” for OpenCRVS implementation:
https://www.opencrvs.org/uploads/images/Understanding-the-costs-of-an-Open
CRVS-Implementation.pdf

“OpenCRVS can now be configured within just 1 week, making digital civil
registration more accessible than ever before”

“This section introduces the installation steps that your Technical System
Administrator will be required to run”
https://documentation.opencrvs.org/setup/3.-installation
Monitoring: https://documentation.opencrvs.org/setup/7.-monitoring

Source Code Security Audit

Processes and Tools

Research and document the complete “Software Bill of Materials” (SBOM)

We used the open-source tool ‘syft’ to create a Software Bill of Materials for the entire
opencrvs-core repository and also for each Docker image produced from that repository. The
OpenCRVS Evaluation Report 2023/2024

22

https://drive.google.com/file/d/1TmaH06vpqpTnLJaZzTPYGJE9DOPD0kXn/view?usp=sharing
https://drive.google.com/file/d/1TmaH06vpqpTnLJaZzTPYGJE9DOPD0kXn/view?usp=sharing
https://drive.google.com/file/d/1FhhllHkxy-8HncxgB5aoABlTJ7iD3gRx/view?usp=sharing
https://drive.google.com/file/d/1FhhllHkxy-8HncxgB5aoABlTJ7iD3gRx/view?usp=sharing
https://www.opencrvs.org/about-us/case-studies/bangladesh
https://www.opencrvs.org/resources/implementation-guidance
https://www.opencrvs.org/resources/implementation-guidance/what-is-a-poc
https://www.opencrvs.org/uploads/images/Understanding-the-costs-of-an-OpenCRVS-Implementation.pdf
https://www.opencrvs.org/uploads/images/Understanding-the-costs-of-an-OpenCRVS-Implementation.pdf
https://documentation.opencrvs.org/setup/3.-installation
https://documentation.opencrvs.org/setup/7.-monitoring


advantage of the former is that we get an overview of all NPM packages used in any of the
OpenCRVS microservices. With the latter we can look at only the packages that appear in the
final Docker image for a given microservice. The SBOMs in JSON format are available here:
https://drive.google.com/drive/folders/1gmNYA2DeaKXzV_f7lDmdJBF1bw_n2bTH

Open-Source Software (OSS) vulnerability scanning

We used the open-source tool ‘grype’ to check the source and Docker images for vulnerabilities.
This tool demonstrated several vulnerabilities, though most were not critical or were awaiting a
fix at the operating system level. One that appears to be an important and relatively easy fix is to
update the parse-url NPM package to the latest version. This would solve several medium-level
vulnerabilities and one critical vulnerability.

The vulnerabilities discovered were reported to the OpenCRVS team, with additional data
provided in the issue filed in their bug tracking system.

Static application security testing (SAST) scanning

We used the open source SAST scanner ‘semgrep’ to perform an automated analysis of the
Typescript/Javascript codebase. This analysis turned up three vulnerabilities deemed ‘critical’,
but one appears to be a false positive.

The vulnerabilities discovered were reported to the OpenCRVS team, with additional data
provided in the issue filed in their bug tracking system.

High-level concerns, issues

Our overall impressions of the OpenCRVS Core codebase and its security posture are positive.

1. The codebase is primarily written in Typescript, a typed superset of Javascript that is the
industry-standard for frontend web development and also very common for backend
applications. Typescript makes large Javascript codebases easier to maintain and is
well-suited to OpenCRVS’s requirements.

2. The frontend framework is React (also an industry-standard) and GraphQL is used for
data-fetching. JWT is used for authorization and Docker is used for deployment. The
ubiquity of these choices make the codebase approachable by outside developers
seeking to contribute to the project or extend it.

OpenCRVS Evaluation Report 2023/2024

23

https://drive.google.com/drive/folders/1gmNYA2DeaKXzV_f7lDmdJBF1bw_n2bTH


3. The project has good automated test coverage and the development team follows best
practices when it comes to implementing and testing new features.

4. There is evidence in our direct interactions with OpenCRVS developers and historically in
the project’s issue tracker that security concerns are handled in a timely, serious and
open manner.

Summary of test environment setup, steps taken to complete analysis

In order to complete this assessment we read application source code, deployed a development
instance as described in the project’s documentation and ran standard open source tools for
automated dependency and vulnerability checks. We also produced a Software Bill of Materials
(SBOM) for the OpenCRVS codebase as a whole and for all of its constituent Docker images as
a snapshot of the dependencies as of version 1.2.0.

Summary of communication with vendor related to disclosures and direct feedback

In the course of our audit we found a small number of issues that we felt should be addressed
by the OpenCRVS developers. We shared our concerns during a video call and in an internal
Slack chat and are satisfied that these issues have received appropriate attention.

Status of any mitigations, patches, updated releases

We are currently tracking two Github issues related to our suggestions:

● Potential password and SMS code vulnerabilities:
https://github.com/opencrvs/opencrvs-core/issues/4979

● NodeJS version nearly EOL: https://github.com/opencrvs/opencrvs-core/issues/5010
○ They will update to Node 16 in their new release v1.3

https://github.com/opencrvs/opencrvs-core/pull/5055

Outcomes

Below are outcomes of the use of the various manual and automated source code audit
processes and tools. This includes disclosures of any vulnerabilities, bugs, typos, threats, etc,
which were all shared with the OpenCRVS team via our communication channel and the public
Github project, as needed.
OpenCRVS Evaluation Report 2023/2024

24

https://github.com/opencrvs/opencrvs-core/issues/4979
https://github.com/opencrvs/opencrvs-core/issues/5010
https://github.com/opencrvs/opencrvs-core/pull/5055


These are the issues we discovered by manually reviewing the source code (version 1.2):

● The NodeJS version is nearly at the end of its long-term support (LTS). OpenCRVS
requires NodeJS version 14 which will reach end-of-life (EOL) at the end of April 2023.
This means that no further security fixes will be provided for newly discovered
vulnerabilities. As a second order effect, many NPM packages remove support for EOL
versions of Node. This may lead to a situation where critical vulnerabilities have been
patched in a required dependency, but the updated code can’t be installed. We
recommend trying to stay on the newest LTS version of Node, which at this time is
version 18 (supported until April 30, 2025). The related Github issue is here:
https://github.com/opencrvs/opencrvs-core/issues/5010

Update: On April 28, 2023 OpenCRVS informed us that they will migrate to NodeJS 16 as
part of their upcoming version 1.3 release and provided a link to the updated code:
https://github.com/opencrvs/opencrvs-core/pull/5055

● Use of insecure random source in SMS code generation which could result in predictable
2FA. It should use a cryptographically secure source of randomness. The code in
question is here:
https://github.com/opencrvs/opencrvs-core/blob/v1.2.0/packages/auth/src/features/ve
rifyCode/service.ts#L43 and the related Github issue is here:
https://github.com/opencrvs/opencrvs-core/issues/4979

● SHA512 is used for password hashing. While SHA512 is cryptographically secure
against collisions, it is fast to brute force on modern hardware. A key derivation function
specifically designed for password hashing would be a much more secure choice. The
recommended standards here are PBKDF2, bcrypt, or scrypt with an appropriate amount
of iterations. The code in question is here:
https://github.com/opencrvs/opencrvs-core/blob/v1.2.0/packages/user-mgnt/src/utils/
hash.ts and the Github issue is here:
https://github.com/opencrvs/opencrvs-core/issues/4979

● We have an open question about how JWTs are revoked when users are deactivated.
There is evidence in the codebase that a list of revoked tokens is stored in Redis, but
when we look at places in the code where tokens are validated, we don’t see tokens
checked against this revoked token list.

OpenCRVS Evaluation Report 2023/2024

25

https://github.com/opencrvs/opencrvs-core/issues/5010
https://github.com/opencrvs/opencrvs-core/pull/5055
https://github.com/opencrvs/opencrvs-core/blob/v1.2.0/packages/auth/src/features/verifyCode/service.ts#L43
https://github.com/opencrvs/opencrvs-core/blob/v1.2.0/packages/auth/src/features/verifyCode/service.ts#L43
https://github.com/opencrvs/opencrvs-core/issues/4979
https://github.com/opencrvs/opencrvs-core/blob/v1.2.0/packages/user-mgnt/src/utils/hash.ts
https://github.com/opencrvs/opencrvs-core/blob/v1.2.0/packages/user-mgnt/src/utils/hash.ts
https://github.com/opencrvs/opencrvs-core/issues/4979


○ From OpenCRVS team: “If you look at this function here:
https://github.com/opencrvs/opencrvs-core/blob/ocrvs-5562/packages/commo
ns/src/token-verifier.ts#L34, it checks for invalid tokens using the "verifyToken"
endpoint that we have in our auth microservice. And this function is used in the
auth strategy of our user facing services (i.e. config, gateway & webhooks)”

● Another open question: it appears that given the UUID of an attachment (which could be
a birth or death certificate containing personally identifiable information) it is possible to
retrieve the document without a JWT check. Is this correct and are there plans to change
it?

○ From OpenCRVS team: “We have addressed this issue here:
https://github.com/opencrvs/opencrvs-core/pull/4970. Now clients will need a
presigned URL to access any attachments which requires a valid JWT”

Readiness of the source code for being enhanced by a third party

OpenCRVS is built on a microservice architecture where each element of the larger application
(authentication, document handling, user management) runs as small independent services.
This architecture is generally a positive for future extensibility by third parties, with some
caveats.

At first glance the proliferation of mini-applications can be overwhelming when compared with a
more traditional monolithic application where all code works together as part of a single large
application. Monoliths are usually considered easier to deploy and test, but they come with
some downsides for extensibility. In a monolithic application, changes in one section of the app
can have negative consequences in other seemingly-unrelated parts of the application. Often
this means that a monolith can require a developer’s understanding of the larger codebase
before they can confidently extend and modify it.

By contrast, the microservice architecture is friendlier to extension despite its logistical
complexity. If a developer wanted to create, for example, an alternate API to query the data held
by OpenCRVS, they could create a microservice to enable that use without necessarily
understanding how all of the other microservices work. They could also confidently add this
service and have the expectation that it will not interfere with other parts of other applications.

The one area where it truly is essential to understand and emulate the existing OpenCRVS
codebase is in the area of authorization. The microservices uniformly use verified JWTs for
authorization and unless the system to be integrated specifically requires a different form of
authorization, we recommend adopting the same standard.

OpenCRVS Evaluation Report 2023/2024

26

https://github.com/opencrvs/opencrvs-core/blob/ocrvs-5562/packages/commons/src/token-verifier.ts#L34
https://github.com/opencrvs/opencrvs-core/blob/ocrvs-5562/packages/commons/src/token-verifier.ts#L34
https://github.com/opencrvs/opencrvs-core/pull/4970


The OpenCRVS team also expressed an interest in accepting patches and possibly even
additional features from developers outside their organisation. This is another positive point for
extensibility and the future viability of the platform.

Application Architecture Audit

High-level concerns, issues

Our overall evaluation of the OpenCRVS application architecture is positive.

While there are some areas where documentation could be improved, the overall architecture is
sound from both an application developer's and operational engineer's perspective. The
microservices architecture is flexible and scalable, and the use of third-party software packages
and services provides a solid foundation for the system. However, the distributed nature of the
architecture and the use of many third-party dependencies mean that the system is complex
and will require specialised expertise to manage and maintain effectively. This complexity of the
system architecture itself is not a negative point, as any scalable and reliable production-level
system will inherently have some level of complexity, but the requirement for capable and
experienced operational expertise should not be ignored.

Summary of test environment setup, steps taken to complete analysis
In order to complete the architectural analysis assessment we read the application source code,
the infrastructure source code, and deployed a development environment as described in the
documentation. We also reviewed the existing architectural documentation.

Relevant source code and documentation sources:

● Primary application and infrastructure codebase:
https://github.com/opencrvs/opencrvs-core

● High level description of the application and deployment architecture
https://documentation.opencrvs.org/technology/architecture

● Illustration of the components in the functional architecture
https://documentation.opencrvs.org/product-specifications/functional-architecture

OpenCRVS Evaluation Report 2023/2024

27

https://github.com/opencrvs/opencrvs-core
https://documentation.opencrvs.org/technology/architecture
https://documentation.opencrvs.org/product-specifications/functional-architecture


Summary of communication with vendor related to disclosures and direct feedback

There were no issues requiring disclosure or mitigation discovered during this portion of the
assessment. However it should be noted that under scope for this assessment was the latest
stable version of OpenCRVS, version 1.2. In the coming weeks version 1.3 will be released along
with functional and architectural changes. We chose to limit the assessment to version 1.2 as it
comprises the latest recommended and stable release of the project. We recommend that a
followup assessment be conducted against version 1.3 when it is released.

Outcomes

Document a shared, holistic view of the structure of the application

Microservices Architecture

OpenCRVS is a modular and scalable web-based application developed and distributed as
independent microservices. Each microservice component and every OpenCRVS component is
independently scalable in private or public cloud, in large or small data centres.

OpenCRVS Evaluation Report 2023/2024

28



Fig: OpenCRVS Application Architecture. Retrieved 2023-04-29.
Source: https://documentation.opencrvs.org/technology/architecture

Microservices are a way of designing software applications by breaking them down into smaller,
independent services that work together to provide the overall functionality. Each service can be
developed and deployed independently, which makes the application easier to scale, maintain
and update over time.

The use of microservices in OpenCRVS is an architectural decision that provides several
benefits and disadvantages for the system. The modular, event-driven approach allows for
greater flexibility and agility in the system, as each microservice can be updated and deployed
independently of the others.

A microservice architecture is particularly well-suited to large-scale applications serving many
users due to its ability to scale horizontally, allowing developers to distribute the workload
across multiple services and servers. However, for applications serving only thousands of users,

OpenCRVS Evaluation Report 2023/2024

29



the benefits of scalability may not be as relevant, as the application may be able to function
effectively on a single large server.

From an application architect's perspective, the use of microservices comes with some
challenges that need to be carefully considered. Microservices increase system complexity,
making it harder to develop, test, and maintain due to the additional effort required to ensure
correct communication between services. Each service must handle its specific function while
interacting with other services, leading to complex testing and debugging processes.
Coordination and testing are also required when making changes to one service that may affect
other services.

Notably, OpenCRVS has a strong end-to-end test suite. An end-to-end test suite is a set of
automated tests that verify the correct functioning of an entire system or application, from the
user interface to the back-end components. It is useful and important when developing
applications consisting of microservices because it ensures that all services work together
correctly and communicate seamlessly, reducing the risk of errors and failures. End-to-end
testing helps identify potential issues and bottlenecks in the system, and ensures that the
overall system meets the functional and non-functional requirements. Moreover, it allows
developers to test the system in a more realistic and comprehensive way, mimicking user
behaviour and real-world scenarios.

From an operational engineer’s perspective, that is, the IT engineers responsible for day-to-day
operations of the application, the use of microservices requires a strong focus on infrastructure
management, as each microservice needs to be deployed, monitored, and managed
independently. Microservices can make life difficult for operational engineers when trying to
troubleshoot problems in a running application due to the distributed nature of the services.
Operational engineers must navigate the complexities of the interactions between
microservices and must have a deep understanding of the system's architecture to pinpoint the
source of the problem, leading to longer resolution times and increased operational overhead.
This can add significant overhead to the development and deployment process, and will require
additional operational and infrastructure expertise.

The use of microservices overall in OpenCRVS is a solid architectural decision. However, it also
requires careful consideration of the potential challenges and a strong focus on infrastructure
management when managing a deployment of the application.

OpenCRVS Evaluation Report 2023/2024

30



Research and document the complete “Software Bill of Materials” (SBOM) regarding
components, database, APIs, and third-party libraries
The “Software Bill of Materials” (SBOM) was delivered as part of the source code security
assessment, so it will not be mentioned here.

Under scope for the architecture assessment are the various external third-party service
dependencies and database systems that comprise a functional deployment of OpenCRVS.

Third Party Technology Choices and Implications on Architecture
In addition to the opencrvs-core application containing the microservices, OpenCRVS leverages
many open source software packages to provide functional features. By and large, the chosen
open source technologies are reliable and proven projects that allow OpenCRVS to develop and
deliver a solid CRVS system with a small development team. These architectural dependencies
are outlined with rationale at
https://documentation.opencrvs.org/technology/architecture#open-source-dependencies

Open source dependencies which are automatically provisioned alongside the
OpenCRVS Core
The following dependencies are used in docker containers in a Docker Swarm on Ubuntu.

Dependency OpenCRVS Justification

Docker Swarm Docker Swarm was chosen by our architects
in 2018 for its lack of requirement of other
essential dependencies, its close alignment
with Docker and its simplicity in terms of
installation and monitoring on a Tier 2 private
data centre, on bare metal servers with
headless Ubuntu OS. Why not use AWS,
public cloud SaaS or serverless you might be
thinking?

● Many countries may be located far
from a high-quality data-centre above
Tier 2.

● Many countries may not legally
support international data storage of
citizen data on a public cloud. Getting
the legal approval for external storage
of citizen data requires regulatory
change which can take a considerable

OpenCRVS Evaluation Report 2023/2024

31

https://documentation.opencrvs.org/technology/architecture#open-source-dependencies
https://www.docker.com/
https://docs.docker.com/engine/swarm/
https://en.wikipedia.org/wiki/Data_center
https://en.wikipedia.org/wiki/Data_center
https://en.wikipedia.org/wiki/Ubuntu


amount of time.
● Because some countries may not be

able to maintain complex software
independently, we are considering a
SaaS solution, provided enough
countries get regulatory approval.
Over time, this situation appears to be
slowly evolving and we are monitoring
it closely.

Previously unskilled system administrators
can quickly up-skill in the techniques of
private cloud infrastructure management
using Docker Swarm. We wanted to
democratise containerisation benefits for all
countries.

Kubernetes We are working on a Kubernetes migration
now that Kubernetes has become a more
mature, easier to use and configure solution,
thanks to dependencies like Helm and other
plugins increasing in popularity since 2018. In
the meantime, Docker Swarm makes it easy
to commence containerised microservice
package distribution privately, automatically
configures a "round robin" load balanced
cluster, and provides Service Discovery
out-the-box.

ElasticSearch OpenCRVS uses ElasticSearch, an industry
standard, NoSQL document oriented,
real-time de-duplication & search engine.
Lightning fast, intelligent civil registration
record returns are possible, even with
imprecise “fuzzy” search parameters.
De-duplication management to ensure data
integrity is essential to any civil registration
system. A fast search engine lowers
operational costs and improves the user
experience for frontline staff.
ElasticSearch is also used with Kibana for
application and server health monitoring.

Hearth MongoDB Database Layer In order to support configuration for limitless

OpenCRVS Evaluation Report 2023/2024

32

https://kubernetes.io/
https://www.elastic.co/
https://www.elastic.co/kibana


country scale, OpenCRVS was designed for
NoSQL, built on MongoDB, and aligned to a
globally recognised healthcare standard.
Massively scalable and extensible, Hearth is
an OpenSource NoSQL database server
originally built by the OpenCRVS founding
member Jembi Health Systems, using
interoperable Health Level 7 FHIR v4 (ANSI
Accredited, Fast Healthcare Interoperability
Resources) as standard.
We extended FHIR to support the civil
registration context. Our civil registration
FHIR standard is described here.

InfluxData The hyper-efficient Influx "time series
database" is used in our stack for "big data"
performance insights. Millisecond level query
times facilitate civil registration statistical
queries over years of data, disaggregated by
gender, location and configurable operational
and statistical parameters.

OpenHIM enterprise service bus,
interoperability Layer

The OpenHIM (Health Information Mediator)
is a NodeJS enterprise service bus designed
to ease interoperability between OpenCRVS
and external systems such as Health &
National ID. It provides external access to the
system via secure APIs. OpenHIM channels
and governs internal transactions, routing,
orchestrating and translating requests into
FHIR between services and the database
layer.

Conclusions
The choice of Traefik for ingress, MongoDB as a database, ElasticSearch for search, Minio for
object storage, and InfluxDB for statistics storage are solid choices. However, the use of
multiple dependencies also increases operational complexity, as each tool requires specific
expertise and management for operation at scale. Despite the added complexity, the use of

OpenCRVS Evaluation Report 2023/2024

33

https://en.wikipedia.org/wiki/NoSQL
https://www.mongodb.com/
https://github.com/opencrvs/hearth
https://www.jembi.org/
https://www.hl7.org/
https://www.hl7.org/fhir/
https://www.ansi.org/
https://www.hl7.org/fhir/
https://www.influxdata.com/
https://github.com/jembi/openhim-core-js
https://www.hl7.org/fhir/


these tools provides essential functionality for OpenCRVS, including secure and reliable data
storage, fast and flexible search capabilities, and comprehensive statistics tracking.

One notable third-party technology dependency used by OpenCRVS is the Hearth database.
Hearth is a fast FHIR-compliant server used as a datastore for data in OpenCRVS.

FHIR (Fast Healthcare Interoperability Resources) is a standard for healthcare data exchange,
published by HL7 (Health Level Seven International), a standards development organisation for
healthcare IT. It is designed to enable the exchange of healthcare information between different
healthcare IT systems, including electronic health record (EHR) systems, healthcare
applications, and mobile devices. FHIR is built on modern web technologies, making it easy to
implement and use in a variety of different settings.
Hearth is a server implementation of the FHIR standard built on top of MongoDB. It was
originally developed by Jembi Health Systems, but they have stopped maintaining and
developing the project (https://github.com/opencrvs/opencrvs-core/issues/3704). The
OpenCRVS team has taken over maintenance of Hearth for their own usage, applying security
patches as needed. The OpenCRVS team has expressed a roadmap for migrating away from
Hearth to another solution, but this is still in progress with a target of version 1.5.

As Hearth is a niche third-party dependency focused on FHIR compatibility, it poses a moderate
risk to the health of the OpenCRVS project. Migrating a datastore out from underneath a
functioning application is a non-trivial task, but after discussions with the OpenCRVS team, we
believe that they will be able to accomplish this without disruption to implementers of
OpenCRVS. Despite the risks involved, it's important to note that Hearth remains a critical
component of OpenCRVS at present.

External Third Party Services

OpenCRVS relies on several third party services for functional requirements and operational
requirements.

On the functional side, OpenCRVS recommends and assumes that you will be using Contentful
(https://contentful.com) to manage the user-readable text in a deployment of OpenCRVS.

Contentful is a headless content management system (CMS) that provides a content
infrastructure for digital products and services. It allows developers and content creators to
manage and deliver content across multiple channels and platforms, providing a flexible and
scalable solution for content management. It is a proprietary (not open source nor free
software) subscription based service which implementers will need to subscribe to and train on.

OpenCRVS Evaluation Report 2023/2024

34

https://github.com/opencrvs/opencrvs-core/issues/3704
https://contentful.com


This dependency is not explicitly stated in the high-level architecture documentation, and
instead buried inside the deployment manual
(https://documentation.opencrvs.org/setup/3.-installation/3.2-set-up-your-own-country-configur
ation/3.2.7-set-up-language-content). We would like to see the OpenCRVS team bring the
Contentful dependency into the high-level architecture discussion with a discussion of
trade-offs, price and how it affects total-cost-of-ownership.

Importantly, the linked documentation states that there is not a hard dependency on Contentful,
but “it requires professional expertise in NodeJS if you want to set up a content management
system other than Contentful.” How exactly to set up such a system is left as an exercise for the
reader.

Operationally OpenCRVS depends on Logrocket, PaperTrail, and Sentry for application
monitoring and logging. Tools that fulfil this role are essential for application monitoring and
debugging, because they provide operational engineers and developers real-time visibility into
how their applications are performing and where errors are occurring.

LogRocket is a session replay and error logging tool that provides detailed insights into user
behaviour and errors in web applications. It allows developers to see exactly what users are
doing on the website and what errors they encounter, enabling them to quickly identify and fix
issues. LogRocket is a proprietary (not open source nor free software) subscription service that
implementers will need to subscribe to.

Sentry is an open-source error tracking platform that provides real-time error reporting, alerting,
and performance monitoring for web and mobile applications. It helps developers identify and
fix errors before they affect users, reducing the risk of downtime and improving user experience.
Sentry is open-source and can be deployed on premise with no software licensing fee, however
this will require additional operational expertise and increase total-cost-of-ownership (TCO).
Sentry is also available as a paid subscription service.

PaperTrail is a cloud-based log management and monitoring tool that provides real-time
visibility into application logs and system events. In OpenCRVS, PaperTrail is used to manage
and monitor the logs generated by the microservices architecture. By centralising logs in a
single location, PaperTrail enables developers and operational engineers to quickly identify and
troubleshoot issues that arise within the system. PaperTrail is a proprietary (not open source
nor free software) subscription service that implementers will need to subscribe to. It's worth
noting that PaperTrail is not deeply integrated into the OpenCRVS architecture and could be
swapped out for an alternative log aggregator.

OpenCRVS Evaluation Report 2023/2024

35

https://documentation.opencrvs.org/setup/3.-installation/3.2-set-up-your-own-country-configuration/3.2.7-set-up-language-content
https://documentation.opencrvs.org/setup/3.-installation/3.2-set-up-your-own-country-configuration/3.2.7-set-up-language-content


PaperTrail, Sentry and LogRocket are critical for maintaining the stability, security, and
performance of web applications, and are used by organisations of all sizes. They are known
trusted players in their space. It was a sound decision by the OpenCRVS team to leverage these
tools, but the role they play in the TCO and regulatory compliance and data privacy should not be
ignored.

When using SaaS-based tools like Contentful, LogRocket, PaperTrail, and Sentry, there are
implications to consider regarding regulatory compliance and data privacy. As these tools are
hosted by third-party providers, it is important to ensure that the service providers are compliant
with applicable regulations, such as GDPR in the EU or HIPAA in the US, and that appropriate
measures are in place to protect sensitive data. Implementers must also ensure that they are
using the tools in accordance with their own internal policies and procedures to maintain data
privacy and security. Failure to properly manage data privacy and security in the context of SaaS
tools could lead to compliance violations, data breaches, or other legal and reputational risks.

OpenCRVS's dependence on these proprietary systems is significant due to the essential
functions they perform for application monitoring, logging, and error logging. While there are
open-source alternatives (or even other proprietary alternatives) available, these would not be
supported by OpenCRVS out-of-the-box. Transitioning to these alternatives would necessitate
custom software development to ensure integration and functionality, representing a substantial
investment of time, resources, and operational adjustments.

If regulatory constraints or IT infrastructure policies prevent the use of these external proprietary
dependencies, deploying OpenCRVS would still be possible, but it would involve some
substantial changes and challenges, particularly concerning operations and information
security.

In terms of operations, the loss of these tools would mean finding and implementing alternative
solutions that fulfil the same roles, and these replacements would need to comply with the given
regulations or policies. This could involve utilising open-source tools, as mentioned in the
previous response, or building custom solutions in-house. Both of these options would involve
significant time and resources, particularly the latter. Moreover, there would be a learning curve
associated with using new tools, and an adjustment period as developers and engineers adapt
their workflows.

From an information security perspective, in-house solutions or on-premises deployments of
open-source tools could potentially offer more control over data, which could be beneficial in
terms of meeting strict data privacy and security regulations. However, this also means the
organisation would assume full responsibility for securing that data, as opposed to relying on
the security measures provided by a third-party SaaS provider. This could necessitate hiring or
OpenCRVS Evaluation Report 2023/2024

36



training security experts, implementing additional security measures, and staying up-to-date
with the latest security threats and best practices.

It's also important to consider the cost implications. While in-house or open-source solutions
might avoid SaaS subscription costs, they could increase costs in other areas. For example,
in-house solutions would require development and maintenance resources, while on-premises
deployments would necessitate investing in hardware and infrastructure, as well as the
personnel to manage and maintain them.

In summary, while it is possible to deploy OpenCRVS without the mentioned external
dependencies, it would involve significant operational adjustments, potential security
implications, and possibly increased costs. A thorough analysis and understanding of the
particular constraints and requirements would be necessary to plan for and mitigate these
challenges.

Finally, for two-factor authentication OpenCRVS relias on an external SMS provider. The security
implications of this will be discussed in the DevSecOps section later in this evaluation. However,
for the purposes of application architecture it should be noted that OpenCRVS recommends the
use of clickatell (https://www.clickatell.com/) and infobip (https://www.infobip.com/) as SMS
delivery providers. Using an external third-party provider for SMS is a reasonable choice, it
makes implementation easier and in many cases might be the only option. Thankfully the choice
of SMS delivery provider is delegated to the specific country/implementer’s configuration
module
(https://github.com/opencrvs/opencrvs-farajaland/blob/v1.2.1/src/features/notification/servic
e.ts), so it will be straightforward for an implementer to use a provider of their choice.

Ease of user interface for setting roles and status visibility
Managing users and roles in OpenCRVS is straightforward. The only notable item here is that
the names of the roles in OpenCRVS (Field Agent, Registration Agent, Registrar, etc) do not
always map directly onto the roles that countries/implementers actually use. But this is a known
issue and will be addressed by the team.

Relevant documentation:
● https://documentation.opencrvs.org/product-specifications/users
● https://documentation.opencrvs.org/default-configuration/opencrvs-configuration-in-far

ajaland/user-role-mapping
● https://documentation.opencrvs.org/setup/4.-functional-configuration/4.5-create-syste

m-users#before-you-start
● https://github.com/opencrvs/opencrvs-core/issues/4376

OpenCRVS Evaluation Report 2023/2024

37

https://www.clickatell.com/
https://www.infobip.com/
https://github.com/opencrvs/opencrvs-farajaland/blob/v1.2.1/src/features/notification/service.ts
https://github.com/opencrvs/opencrvs-farajaland/blob/v1.2.1/src/features/notification/service.ts
https://documentation.opencrvs.org/product-specifications/users
https://documentation.opencrvs.org/default-configuration/opencrvs-configuration-in-farajaland/user-role-mapping
https://documentation.opencrvs.org/default-configuration/opencrvs-configuration-in-farajaland/user-role-mapping
https://documentation.opencrvs.org/setup/4.-functional-configuration/4.5-create-system-users#before-you-start
https://documentation.opencrvs.org/setup/4.-functional-configuration/4.5-create-system-users#before-you-start
https://github.com/opencrvs/opencrvs-core/issues/4376


Evaluation of maintainability, performance at scale, re-usability, flexibility.

Further Remarks on Application Extensibility

Building on the remarks from the “Readiness of the source code for being enhanced by a third
party” section in the Source Code Security Audit, we note that the application is readily
extensible by implementers of the system, which the microservice architecture is well suited for.

OpenCRVS has created a user interface component library to maintain a consistent user
experience in all parts of the application. The component library is built on Storybook, the
industry-standard for React component management. In addition to being useful for maintaining
uniformity within the OpenCRVS application, these components would also be useful for
implementers who may want to extend the application while keeping a familiar user experience.

Given the vast technical knowledge to develop on OpenCRVS however, we suggest to the
OpenCRVS team that they update their documentation (which is otherwise fantastic) to include
examples of customization and extensibility to provide implementers with a spring-board from
which to start their customizations.

Maintainability and Performance

As discussed, the use of a microservices architecture allows for modularity and scalability,
enabling each component to be updated and deployed independently of the others. The existing
end-to-end testing suite gives confidence in the OpenCRVS developer’s ability to manage the
complexities of a microservice architecture while delivering a reliable and performant product.

OpenCRVS is not a turn-key system and requires operational expertise to manage and maintain
effectively. Any implementers of OpenCRVS will require a strong operational IT background and
be familiar with (or able to learn) the various dependencies discussed above. However the same
could be said for nearly any software application operating within the same functional space.
OpenCRVS's documentation is extensive and includes deployment artefacts in the form of
docker-compose files, which greatly reduces the burden of setup and maintenance for
implementers

OpenCRVS Evaluation Report 2023/2024

38



Penetration Testing Audit

Details of process, setup, tools utilised

We utilised cloud-based testing suites and services, alongside human teams, that offer a variety
of capabilities and options for one-time and ongoing scanning and testing. While fully bespoke
and custom security audits are always a valuable service, they come at a very high cost in both
money and time. Our approach for this evaluation was to use tools and techniques that are both
within the realm of the available budget, and provided a more dynamic, ongoing approach for
uncovering vulnerabilities. We recommend this approach for use not only in the evaluation
stage, but also as part of the ongoing monitoring in future eCRVS production deployments.

● Intruder.io: fast, cheap automated vulnerability scanning service, with multiple vantage
points; Less feature rich, but still a good tool for initial “smoke test” results

○ Emergent Threats performs automated, nearly daily additional ongoing, focused
scans based on newly identify threats and vulnerabilities added to the Astra
database

○ Nessus Agents extend scanning to run within server-infrastructure from the
“inside out” uncovering vulnerabilities and configuration issues that an attacker
may take advantage of if they compromise a network

● Astra: Powerful tool+service providing Automated, Vetted, and Emergent Threats
vulnerability scanning

○ Automated is machine-only scripted testing of a comprehensive set of known
vulnerabilities

○ Vetted builds on the Automated result, then adds human review and verification
of identified potential vulnerabilities to add more detail, and identity and label
“false positives”

● Manual Penetration Testing
○ Building on results of automated and vetted scanning, a manual penetration test

utilises the same approach, techniques, attack vectors, and known vulnerabilities,
but with added creativity and skills of a human-based attacker.

○ Very few “false positive” outputs come from this step, due to the human operator
understanding if they have been able to achieve a valuable

The Manual Penetration Testing of the test OpenCRVS instance occurred during the week of
26th July 2023. The testing was performed from a remote attacker’s perspective with the
following goals:

OpenCRVS Evaluation Report 2023/2024

39



● To identify security loopholes, business logic errors and evaluate effectiveness of
existing security controls in the application that pose a risk to the systems,
infrastructure, or data.

● Recommend technical security best practices to improve security posture of the target
applications audited.

● Explain the potential impact of the identified vulnerabilities, such as the extent of data
exposure, potential financial losses, or reputational damage that could occur if they were
exploited by malicious actors.

● Provide clear and actionable recommendations for addressing the identified
vulnerabilities.

From the Manual Penetration Testing, a total of 18 vulnerabilities/recommendations were
reported, with 1 High, 9 Medium, and the remaining Low or “Info”.

Out of a score of 10, the highest risk score assigned to a vulnerability was 7.1, the lowest was 3,
and the average score was 4.6.

Full PDF reports of findings from the Manual Penetration Testing is available here:
https://drive.google.com/file/d/1ABSzJFUyjLXVljipszjqTnfClIn-e_Ci/view?usp=drive_link

Additional vulnerabilities were identified and logged in the automated scanning, with the full PDF
reports of finding available here:
https://drive.google.com/drive/folders/1VfeO4JZOqyEUm6CcWnG7qeSY6UPdWVyA?usp=shari
ng

High-level concerns, issues
Here is a summary of the top vulnerabilities discovered and their current status.

Vulnerability Description Proposed Fix Status

None Hashing
Algorithm
Attack
Critical

JWT library accepts
none hashing
algorithm. none
hashing algorithm is
used by the JWT in
case the integrity of
the token is already
verified. So an attacker

Not allowing none
hashing algorithm

Under review, and
considering if a false
positive or not; “If you
manipulated the token to
insert any claim, all you
could do is access an empty
client application as a
different user type to see

OpenCRVS Evaluation Report 2023/2024

40

https://drive.google.com/file/d/1ABSzJFUyjLXVljipszjqTnfClIn-e_Ci/view?usp=drive_link
https://drive.google.com/drive/folders/1VfeO4JZOqyEUm6CcWnG7qeSY6UPdWVyA?usp=sharing
https://drive.google.com/drive/folders/1VfeO4JZOqyEUm6CcWnG7qeSY6UPdWVyA?usp=sharing


can alter the token
claims and the token
will be trusted by the
application.

what UIs look like for
different user types. You
couldn’t download or
manipulate any data.

Insecure
password
change
mechanism
may lead to
full account
takeover
High

A current password
should be required to
change the email
address or password
so that an attacker
who can perform
actions on behalf of a
victim user (e.g., using
XSS, CSRF) cannot
take over the user's
account by changing
the e-mail address or
password.

Validate old
password during
email change.

Reported to OpenCRVS

Cross Site
Scripting
(Reflected)
High

Cross site scripting
(XSS) is a common
attack vector that
injects malicious code
into a vulnerable web
application. XSS
differs from other web
attack vectors (e.g.,
SQL injections), in that
it does not directly
target the application
itself. Instead, the
users of the web
application are the
ones at risk.

Web application
firewalls (WAFs) can
be used to mitigate
reflected XSS
attacks. Also,
deployment behind
“Gov’t VPN” can also
mitigate impact

The script doesn’t run in
testing and an error JSON
response is created. I think
the objection here is that the
app returns a 200 status
code for errors. Re-run test
in manual/vetted state to
determine if true.
Otherwise, ensure
deployment guides have
recommended info
regarding WAF and VPN
requirements

SQL Injection -
SQLite
High

SQL injection is a
technique used to
exploit user data
through web page
inputs by injecting SQL
commands as
statements

Do not trust client
side input, even if
there is client side
validation in place. In
general, type check
all data on the server
side

Waiting for response from
OpenCRVS team. It may be
an issue in the “metabase”
component, and not the core
OpenCRVS

Content
Security Policy

Some aspects of the
defined CSP may be

The unsafe-inline
Content Security

Tracking on ticket with
OpenCRVS team:

OpenCRVS Evaluation Report 2023/2024

41



(CSP)
Moderate

exploitable,
specifically “unsafe
inline”
https://content-securit
y-policy.com/unsafe-in
line/

Policy (CSP) keyword
allows the execution
of inline scripts or
styles.

https://github.com/opencrvs
/opencrvs-core/issues/5607
Working together to identity
instances of unsafe CSP in
their configuration

Server Leaks
Version
Information
Moderate

Web servers often
include the version
information in the
HTTP response
header field Server.
This information can
be valuable to
attackers

Remove the version
information from the
Server HTTP
response header
field.

Configure the web
server to not include
version information
in the Server HTTP
response header
field.

Tracking here:
https://github.com/opencrvs
/opencrvs-core/issues/5608

No Rate
Limiting; Brute
Force Attacks
are Possible
Moderate

Having no rate limiting
can allow attackers to
send a large number
of requests to perform
brute force
attacks, disrupt
normal service, or
spam users.

Implement
rate-limiting.

Reported to OpenCRVS

No Account
Lockout
Policy;
Password can
be brute
forced on
Login page
Moderate

The application does
not have a lockout
policy on the login
page to prevent user
account compromise
via brute force
attacks. We were
able to successfully
send 100+ requests
without getting
blocked

implement an
Account Lockout
policy which will
cause temporary
lockout of a user
account after 10 or
15 failed login
attempts and after
that, the user should
be made to contact
the Administrator to
regain access

Reported to OpenCRVS

OpenCRVS Evaluation Report 2023/2024

42

https://github.com/opencrvs/opencrvs-core/issues/5607
https://github.com/opencrvs/opencrvs-core/issues/5607
https://github.com/opencrvs/opencrvs-core/issues/5608
https://github.com/opencrvs/opencrvs-core/issues/5608


Username
Enumeration
Moderate

We found that the
application displays
sensitive information
which allows attackers
to guess valid
registered email
addresses of
customers.

It is recommended to
show a response
that does not show
variation leading to
username
enumeration when
brute forced. For
example, "If
an account
associated with the
provided email
address exists, an
email containing
instructions on how
to reset the
password would be
sent."

Reported to OpenCRVS

Some of the issues discovered were determined to be irrelevant in the context of the OpenCRVS
application. For example, the “None Hashing Algorithm Attack” listed as Critical above is a result
of OpenCRVS’s split client/server architecture. In consultation with OpenCRVS we determined
that no privileged data could be accessed by exploiting this avenue. It would merely allow a user
to see the empty user interface of a higher-privileged user, something they could also do by
downloading the source code from GitHub.

Summary of test environment setup, steps taken to complete analysis

The test setup was deployed by the OpenCRVS organisation at the public endpoint of
https://guardian-project.opencrvs.org/

This is version 1.3 of the application, and should be considered a development or staging server.
It has no actual data on it. It was also configured with a static 2FA code of 000000 to enable
automated testing without requiring human intervention.

OpenCRVS Evaluation Report 2023/2024

43

https://guardian-project.opencrvs.org/


Summary of communication with vendor related to disclosures and direct feedback

After reviewing the potential vulnerabilities suggested by the Astra tool, we were able to rule out
several as false positives, either because the technology that would enable a specific
vulnerability was not present in the OpenCRVS stack or because sites not a part of the main
OpenCRVS application were being tested. What remained were primarily issues related to
specifics of the web server deployment. We met with OpenCRVS developers and came up with a
set of vulnerabilities that we agreed needed to be addressed. They are:

● The TLS minimum version was too low, which presented potential security issues with
encrypted web traffic. This problem was tracked in this GitHub issue:
https://github.com/opencrvs/opencrvs-core/issues/5606 and was resolved with this
commit: https://github.com/opencrvs/opencrvs-farajaland/pull/607

● The Nginx web server was reporting too much information about the specifics of its
version and configuration. This was tracked in this GitHub issue:
https://github.com/opencrvs/opencrvs-core/issues/5608 and resolved with this commit:
https://github.com/opencrvs/opencrvs-core/pull/5625

● The Content Security Policy which determines how scripts may run inside the application
while loaded in a browser was too permissive. This was tracked in this GitHub issue:
https://github.com/opencrvs/opencrvs-core/issues/5607 and resolved in this commit:
https://github.com/opencrvs/opencrvs-core/pull/5627

Status of any mitigations, patches, updated releases

As of 5 July 2023, a number of fixes and mitigations have been made by the OpenCRVS team:
● TLS minimum version is now >=1.2
● Nginx version doesn't leak from response headers anymore
● Content-Security-Policy is now stricter and doesn't include 'unsafe-inline'

We will continue to rescan and review fixes, and update the audit vulnerability report.

Outcomes

Evaluation of the holistic approach in terms of cyber security

Security policies analysis and Analysis of security guidelines/documentation

OpenCRVS Evaluation Report 2023/2024

44

https://github.com/opencrvs/opencrvs-core/issues/5606
https://github.com/opencrvs/opencrvs-farajaland/pull/607
https://github.com/opencrvs/opencrvs-core/issues/5608
https://github.com/opencrvs/opencrvs-core/pull/5625
https://github.com/opencrvs/opencrvs-core/issues/5607
https://github.com/opencrvs/opencrvs-core/pull/5627


Other areas of this document have covered our perspective regarding the following of the variety
of policies around deployment, configuration, and architecture security.

In the Application Architecture section, it was stated that: “...the requirement for complex,
coordinated testing, with capable and experienced operational expertise should not be ignored. Be
mindful of compliance, regulations, policies regarding protection of sensitive data.”

In the DevSecOps review, it was stated:“it is important to ensure that the service providers are
compliant with applicable regulations, such as GDPR in the EU or HIPAA in the US, and that
appropriate measures are in place to protect sensitive data. Implementers must also ensure that
they are using the tools in accordance with their own internal policies and procedures to maintain
data privacy and security. Failure to properly manage data privacy and security in the context of
SaaS tools could lead to compliance violations, data breaches, or other legal and reputational
risks. “

We believe OpenCRVS does take security seriously, and has documentation, curriculum, and
technology for implementing compliant deployments. However, as stated before, we do feel
there are some gaps in their documentation for production deployment that need to be
improved. In addition, continued work to understand the threat model of the places where this
solution will be deployed is highly recommended.

Analysis of history of public vulnerabilities
(and CRVS product developer & maintainer response/management and communication to
users)
Being a relatively new codebase, there is not a large history of public vulnerabilities. What we do
know however, is that OpenCRVS has engaged in multiple previous security audits, and that as
with our own experience, they were very engaged and rapidly addressed critical issues. Their
team, process, codebase, and entire organisation is a well-run open-source project that can
benefit from having “many eyes” on the solution, addressing them in a unified way, and iterating
through improved releases that can be deployed into an ecosystem of instances. This is an ideal
way to address the “security is a process, not an endpoint” mindset.

Remaining Sections
● These two areas of interest were sufficiently covered in the other areas of our audit. We

do have some initial notes below:
○ Analysis of the security of data at rest and in motion

■ In Motion: The penetration test did find issues regarding configuration
and version of TLS, as well as some areas where TLS/SSL could be
bypassed entirely. Again, this is primarily a deployment config issue, and
not a fundamental problem in the codebase.

OpenCRVS Evaluation Report 2023/2024

45



■ At Rest: Continued vigilance around threats related to unauthorised
extraction of sensitive data through physical access to servers must be
part of the threat model considered. Ensuring data encryption at rest is
available as an option is important. See our recommendation about
“Encrypted LVM” elsewhere in this document.

Feedback
● We will remain engaged with the OpenCRVS team as they continue to respond to and

resolve issues found in the audit
○ This includes one final round of manual penetration testing once the primary high

and critical issues are resolved.
● We will discuss the use of ongoing vulnerability scanning services that we can provide

for free for the next 12 months as part of this service.
● We will discuss with the OpenCRVS teams what discovered vulnerabilities could be

mitigated by improving deployment documentation, scripts, tools, etc.

DevSecOps Analysis

Summary of test environment setup, steps taken to complete analysis

OpenCRVS is designed to be deployed in a Tier 2 datacenter due to the unavailability of higher
tier datacenters in the target regions. These data centres will provide rackspace, may provide
access to transit providers or provide a managed uplink, and will have partially redundant power
and cooling. Uptime will typically be better than 99.5%, however the application is designed for
intermittent connectivity in mind and so interruptions to connectivity should not impact the
operation of the system. Interruptions to power and cooling would be more likely in this
environment than in higher tier datacenters and so the application should use a robust approach
to data transactions that can maintain consistency through power events. These considerations
are not unique to OpenCRVS and will be applicable to all the solutions assessed in this project.

In order to perform this analysis, the documentation was used to guide a deployment of the
software in AWS but utilising AWS Lightsail virtual machines and making no use of the
additional networking or storage features offered by the AWS platform. This approach was
taken over a cloud-native service like EC2 due to the deployment environments that would be
available in the target regions.

OpenCRVS Evaluation Report 2023/2024

46



The deployment process uses Ansible, an industry-standard tool that employs declarative
configuration files to describe the expected final state of a server, including all installed
applications, patches and network setup. Ansible files (usually referred to as “playbooks”) may
be version-controlled like any other code which makes them auditable and encourages iterative
development.

The test deployment followed the documentation at:
● https://documentation.opencrvs.org/setup/3.-installation

and made use of the opencrvs-core and opencrvs-farajaland repositories, using the default
Farajaland country configuration.

Outcomes

Software development operation best practices
There is a strong reliance on GitHub and CI tools throughout, which should be generalised to
support options that may be required to host data and build processes in-country to comply with
local regulations.

Review of operations management from a system administrator perspective
The production deployment documentation contains a number of details that may not be
appropriate to a production deployment. The high-level issues relate to:

● Network security considerations
● Key and secret management
● Deployment maintainability

Network Security Considerations

The deployment guide starts from a point where you already have deployed 3 or 5 servers
running Ubuntu LTS. This assessment assumes that these servers will be deployed in a
co-location facility within the datacenter.

The choice of Ubuntu LTS is appropriate for this kind of deployment as security updates should
be provided for 5 years since the release. It's important to remember, however, that Ubuntu LTS
support is provided by Ubuntu community members and is not guaranteed without a
commercial support contract from Canonical.

OpenCRVS Evaluation Report 2023/2024

47

https://documentation.opencrvs.org/setup/3.-installation


Ubuntu LTS will have good compatibility with server hardware from popular vendors such as HP,
Dell, Supermicro, etc. It should be possible to acquire hardware in the target regions, and no
specialist hardware would be required to run the software.

Before continuing with the deployment of software to the servers, first the network architecture
must be considered. This aspect is not discussed in the OpenCRVS documentation. There will
be a requirement for communication between the servers in the cluster and this communication
should not be exposed to the Internet.

The following TCP ports were discovered open on the demonstration deployment of OpenCRVS
(maintained by the OpenCRVS team):

Port Description

22 OpenSSH Server

80 HTTP (redirect to HTTPS)

443 HTTPS (Application)

8200 HTTP (APM Server)

9000 HTTP (Redirects to HTTP MinIO console)

9001 HTTP - MinIO Console

9200 HTTP - ElasticSearch

Of these open ports, the HTTP and HTTPS ports (80 and 443) are expected to be open. It is not
known if this is a single-server deployment, or a multi-server deployment, but notably the Docker
Swarm port is not accessible via the Internet as had been previously identified by the Gofore
report. There are however still the SSH port, and 4 plain HTTP listeners, for which there is no
clear use case for access from the general Internet.

The Google Analytics cookie that is served by the main website is not restricted to HTTPS only
pages and will be sent with any request to those 4 unsecured listeners. Other cookies may also
be similarly unrestricted. No attempts were made to login to any of the services on the HTTP
listeners.

Key and Secret Management

Deployment and management of the servers running the application happens via Secure Shell
(SSH). While there is advice to use key authentication for this, the documentation assumes that

OpenCRVS Evaluation Report 2023/2024

48



the operations will be performed using the same SSH keys as may be used with a GitHub user.
There is no discussion about the use of hardware tokens for SSH key storage in the
documentation.

Using hardware tokens such as YubiKeys for SSH keys is a highly secure approach to access
management. Without the use of a hardware token, the keys may be freely accessed, duplicated
and potentially extracted from the environment. Being uncertain about the locations in which the
key exists and is usable makes it difficult to reason about threats posed by the key.

The documentation only refers to adding the key to the server and does not refer to the users or
groups that should be used for privilege separation. The Ansible configuration assumes that the
SSH user would be root, however it would not be advised to allow SSH access by the root user
directly. The Ansible configuration also uses the become module for privilege escalation from
an unprivileged user, which is the arrangement used for the assessment. That user has
passwordless sudo access in order to allow use of the become module. It is also required that
the master node must be able to SSH into each of the other nodes, including the backup node.

Recommendation: There is no guidance offered for how to manage key security credentials
(like an SSH key). We would recommend that this should be done using a hardware token.

Encrypted storage on the server is only used for the data volumes, and is provided via cryptfs, a
built-in disk encryption system in the Linux kernel. During the installation attempt, cryptfs was
not used despite it being enabled. There may be an error in the playbook where as the cryptfs
file does not exist, the `st` variable registers that, and after the creation of the file nothing will
update that variable. Future tests of `st.stat.exists and encrypt_data` will still resolve to false.

A swap file is created and enabled, however the swap file is not encrypted. This means that data
stored in memory at runtime may still be committed unencrypted to the disk. This pattern
reflects one that may be used during development using virtual machines with fixed disk
layouts.

Recommendation: We would recommend that the system be deployed without these specific
post-installation modifications, using encrypted LVM from the start.

OpenCRVS Evaluation Report 2023/2024

49



Encrypted LVM is supported by Ubuntu 20.04 LTS as part of the standard installation. On
platforms with a Trusted Platform Module (TPM), this can hold the key to decrypt the disk on
boot and various checks can be used to automatically destroy the TPM's copy of the key on
suspected compromise (e.g. chassis entry sensor, or extended power interruption).

Deployment maintainability

The Ansible playbooks are written as single playbooks with no external roles or plugins. It would
be advisable to break down the playbook into roles, even if these are maintained within the
same repository, to provide individually testable and documentable units. It is easier to review a
number of smaller components with well defined interfaces than it is to review a large
monolithic component with greater internal complexity.

There are issues with idempotency in the playbooks. A key strength of Ansible is the ability to
use playbooks to monitor and correct drift in the system configurations over time. If changes
are made directly on the production server then a future run of the playbook would be able to
detect and correct those changes. It would appear that these playbooks are intended to be run
only once at the start to the deployment, but this does not take full advantage of Ansible as a
powerful tool for managing software deployments.

An example of this is in the deployment playbook within the opencrvs-farajaland repository:
playbook-3.yml. The task Create MongoDB replicate key file locally1 will run regardless of the
file already existing. Multiple runs of the playbook will discard the created key rather than
reusing the existing key. Further, the keyfile created by this task stores the result in the storage
of the machine running Ansible and does not otherwise persist it.

The documentation does not explicitly mention the deviation from the usual way in which
Ansible is used and so this could create confusion for system administrators that expect to be
able to run the playbook multiple times without side effects.

Using multiple playbooks for the different deployment scenarios has already led to divergence in
the repository between the playbooks. The only differentiating factor should be the number of
worker nodes that are deployed but our analysis has found that other aspects have changed
over time where updates have not been uniformly applied across the three variants of the
playbook. Different software package repositories are used to install Docker between the
playbooks, a file mode is missing from the replication key installed, and a comment regarding
MOSIP integration is missing from one file. These differences evidence a need to consolidate
the playbooks and reduce maintenance burden as minor issues have crept in.

1https://github.com/opencrvs/opencrvs-farajaland/blob/702c3596b847ada66f000ed534ae8e2bda42351
4/infrastructure/server-setup/playbook-3.yml#L13
OpenCRVS Evaluation Report 2023/2024

50

https://github.com/opencrvs/opencrvs-farajaland/blob/702c3596b847ada66f000ed534ae8e2bda423514/infrastructure/server-setup/playbook-3.yml#L13
https://github.com/opencrvs/opencrvs-farajaland/blob/702c3596b847ada66f000ed534ae8e2bda423514/infrastructure/server-setup/playbook-3.yml#L13


Recommendation: We would recommend that these playbooks be merged together and the
true and intentional differences are extracted as variables or controlled with conditional
statements.

The documentation recommends Gitflow (isolating your work into different types of git
branches) for development and expects that country-specific configurations will regularly rebase
on the upstream Farjaland country configuration. This will involve rebasing multiple branches
and these operations are not familiar for those that do not work with Git regularly. Either
additional documentation is required here, or a script to perform the automations automatically
and remove the risk of human error.

The documentation contains a note2 regarding the import of CSV files that is concerning. It
requires that the CSV file imported contains no empty lines, and that there are no commas
within data fields. This suggests that a naive implementation of a CSV reader is being used that
may cause data integrity errors on import, and being a naive implementation may not raise
warnings about those errors. There exist in almost every programming language robust parsers
for CSV files that will correctly handle the escaped and quoted strings produced by common
CSV writers, e.g. Microsoft Excel.

While a "Humdata" standard is referred to, a search did not turn up any documentation on the
standard and so implementers are left to reverse engineer the specification of the file from a
number of examples.

Translated strings can be used and standard tools like Transifex can export to the JSON format
that is used.

Guidance on production deployment

Recommendation: We recommend that at least a stateful firewall is used to protect the IP
subnet on which the cluster is deployed and that that subnet should be isolated at layer 2,
either by VLAN or physical layer separation.

2https://documentation.opencrvs.org/setup/3.-installation/3.2-set-up-your-own-country-configuration/3.2.
3-set-up-cr-offices-and-health-facilities/3.2.3.1-prepare-source-file-for-crvs-office-facilities (Archive:
https://archive.is/MF5Yy)
OpenCRVS Evaluation Report 2023/2024

51

https://archive.is/MF5Yy
https://documentation.opencrvs.org/setup/3.-installation/3.2-set-up-your-own-country-configuration/3.2.3-set-up-cr-offices-and-health-facilities/3.2.3.1-prepare-source-file-for-crvs-office-facilities
https://documentation.opencrvs.org/setup/3.-installation/3.2-set-up-your-own-country-configuration/3.2.3-set-up-cr-offices-and-health-facilities/3.2.3.1-prepare-source-file-for-crvs-office-facilities
https://archive.is/MF5Yy


For internal communication inside the cluster, a separate cluster subnet should be utilised if
possible, without the ability to route to and from the global Internet from that subnet. In addition,
the firewall may provide VPN access to authenticated users to access the servers by SSH and to
protect the communication between the server cluster and the backup server.

Security appliances, such as the Juniper SRX345, may be deployed in pairs to provide fault
tolerance. These appliances would combine both the stateful firewall and VPN in a single 1U
form factor. If deployed in a datacenter where other services are already deployed, these
features may be provided by an existing security appliance.

It is suggested that secrets are maintained in a password manager and passed to the Ansible
playbook via the command line at runtime. This approach would not be advisable as it will result
in the secrets being stored in the command history of the shell, which is freely accessible to any
application running on the machine. There also has not been any discussion around the security
of the machine that is running Ansible so it's not clear if this machine would have encrypted
storage.

Recommendation: Mozilla's sops may be used to encrypt the relevant secrets and store these
alongside the rest of the IaC.

An Ansible vars plugin (community.sops.sops_vars) is available to load the variables and
decrypt them at the time that the playbook is run. This would also reduce possibilities of human
error when manually copying and pasting secrets from the password manager.

There is an acknowledgement in the documentation that the current approach would not be
production-ready, which is good to see. There is a link to the MOSIP documentation relating to
the requirements for a Hardware Security Module (HSM) used to securely store the secrets,
however this HSM would be greatly over-specified if all it would be used for is providing access
to runtime secrets. If the goal is to use an HSM to produce signatures for certain records as part
of registration workflows it would be more appropriate, but in that case we would still
recommend using a separate HSM for the management of runtime secrets.

Setting up a development environment is required as part of the production deployment. This is
where the country configuration will be built. The development environment expects that you will
be running Google Chrome on the same machine in order to access it. Given how common it is
for vulnerabilities to occur in browsers, it's not advisable to allow the browser to be running with
the same user account on the same system as will be building the country configuration. At the

OpenCRVS Evaluation Report 2023/2024

52



very least, a different user account should be used to run Google Chrome, or the necessary
ports required may be forwarded over SSH using an otherwise unprivileged user to another
machine where the browser is used.

In the section on setting up the country configuration, the documentation recommends 15
extensions to Visual Studio Code. This includes 3rd party extensions that have not necessarily
been audited for security vulnerabilities. They are installed from an open marketplace with a low
barrier for entry to submit extensions. The extensions are privileged in that they get to modify,
and can conceal the modification of, the country configuration code. They are perfectly placed
to conduct a supply chain attack. In addition, there is a risk of dependency confusion as the
extensions are referenced by name only and not to a particular package or to a package by a
particular author.

The documentation also recommends ohmyzsh, a popular framework for customising the zsh
shell. While customising the shell can be fun, this kind of framework is not necessary and can
be harmful in a production environment due to the possibility of deliberate or accidental bugs
that may affect the correct operation of the system.

Recommendation: 3rd party customizations should be limited in the production environment,
and in systems that have the ability to pass on code and configuration unaudited to the
production environment, to only those that are strictly necessary to either perform the
configuration and deployment or to mitigate or remediate other identified risks.

Final Report and Recommendations

Overall Findings

🟢 Positive.

Overall we find the OpenCRVS product to be stable and ready for implementation. It has great
documentation for implementers, is interoperable with many e-government solutions, focuses
on real-world workflows and a team ready to help. The reliance on third-party dependencies are

OpenCRVS Evaluation Report 2023/2024

53



commonplace and the OpenCRVS choices of microservices makes for a flexible and extensible
solution.

We found a few areas for improvement, which are outlined further down, but they do not detract
from the overall positive evaluation of OpenCRVS. OpenCRVS is new to the CRVS market
(debuted in 2019). It is only a “version 1” generation release, and may not be as flexible or
feature rich as other potential solutions. It does benefit from a laser focus on the eCRVS
functionality, modern and clean architecture, and an extremely organised and well-run public
open-source project. When thinking about how this might be deployed and maintained
throughout the world, the idea that a single unified upstream codebase could be improved and
updated, and then pushed out to downstream instances, is very attractive and beneficial.

To conduct the OpenCRVS evaluation we read publicly available documentation, visited their
website and supporting resources (Github, documentation site, etc), we deployed our own
instance and tested for vulnerabilities and dependencies, created a SBOM for the codebase,
audited the architecture, deployed the software in AWS and ran multiple variations of
vulnerability scans and penetration tests.

Throughout our evaluation of the OpenCRVS solution we communicated any critical
vulnerabilities or discovered security risks to their team. Once we completed our evaluation we
allowed time for the OpenCRVS team to review our findings and make comments. A number of
key issues identified have already been addressed by and even resolved by the OpenCRVS team
during this process. While others remain known and discussed.

Since the OpenCRVS Evaluation Report will be public, all publicly disclosed issues remain in the
published version of our report and anything we feel are sensitive or detrimental to the security
of the solution or its users have moved to a separate Annex which will remain private.

Area of
Evaluation

Readiness Impact Comments

Evaluation
Aspect

General readiness /
fitness of solution
in specific area

Affect that readiness has on viability of
solution as part of this evaluation

Any summary thoughts
on each area

Source Code
Security

Positive/ Ready OpenCRVS is a well-built open-source
project, built using best practices, that
utilises microservices, common backend
applications & industry-standard frontend.
Security concerns are handled in a timely,
serious and transparent manner

Some open issues remain
from source code audit,
but we have confidence
they will be addressed
thanks to engaged and
open nature of the team

OpenCRVS Evaluation Report 2023/2024

54



Application
Architecture

Positive/ Ready Overall architecture is sound from both an
application developer’s and operational
engineer’s perspective. The chosen open
source technologies are reliable and
proven projects that allow OpenCRVS to
develop and deliver a solid CRVS system
with a small development team.

The requirement for
complex, coordinated
testing, with capable and
experienced operational
expertise should not be
ignored. Be mindful of
compliance, regulations,
policies regarding
protection of sensitive
data.
* Update Assessment of
new v1.3 release changes
advised

Penetration
Testing

Positive/ Pending
resolution of
critical and high
issues

While critical and high issues were found,
these are largely in deployment
configuration, and not faults in the core
application. The OpenCRVS team is very
responsive, and work on resolving and
retesting is underway.

Ongoing scanning and

vigilance is necessary to

ensure a secure solution

* Manual Pen Test to be
scheduled for final
review

DevSecOps Positive / Needs
attention

Documentation about network
architecture, Ubuntu LTS deployment, key
management (hardware tokens), needs to
be updated and/or included.
Strong reliance on Github and CI tools
which should be more general to support
in-country processes and regulations.

Given OpenCRVS is an

open project/platform

and not a “vendor”, the

ability for independent

deployment without

error or misconfiguration

is a key area to improve

Actionable Recommendations

● General Recommendations
○ In stage 2 of this project stream, it would be useful to research and create some

persona-type modelling of potential government/ organisation deployment
capabilities and environments.

■ The persona archetype could be useful across many other digital
interventions in which the system is ultimately going to be run by the
government. Consider which regions and countries to focus on.

OpenCRVS Evaluation Report 2023/2024

55



○ Understand if training/upgrade of skills to move towards valuable services like
Docker, etc, is something that should be invested in.

○ Discuss and develop an accurate threat model/stance that aligns with the vision
of OpenCRVS and expectations of UNICEF.

● Documentation
○ Add documentation to the application architecture about the external operational

services: LogRocket, Sentry, and PaperTrail.
■ Why are these dependencies used? How do they affect TCO?
■ In the case of PaperTrail, since it is not required by the source code itself,

mention possible alternatives.
○ Add documentation to the high-level architecture that an external SMS delivery

service provider will be required.
○ Highlight at the high-level the role Contentful plays within the architecture and

how it is a defacto dependency.
■ Optionally, include a working example of how to replace Contentful with

an alternative, perhaps on-premise, solution.
○ Provide a source code skeleton or starting point with examples, that an

implementer could use if they need to customise or extend aspects of the system
beyond the basic country configuration. Ideally an example test suite would be
included too.

● Source Code Security
○ Not a turn-key solution and requires operational expertise to manage and

maintain effectively, which is common for many software applications in this
functional space.

■ Docker-compose files reduce the burden of setup and maintenance.
○ From our perspective, they could do more with active/ongoing vulnerability

scanning, which is why we have introduced the idea of services like Intruder or
Astra, along with source code level dependency monitoring as part of their CI
process.

○ In the upcoming version 1.3, OpenCRVS will add an additional external
dependency of Metabase to facilitate the functional feature of graphs and
dashboards for vital statistics. The security, privacy and operational implications
of this new dependency should be explored.

■ https://github.com/opencrvs/opencrvs-core/issues/4679
■ https://www.metabase.com/

● Application Architecture
OpenCRVS Evaluation Report 2023/2024

56

https://github.com/opencrvs/opencrvs-core/issues/4679
https://www.metabase.com/


○ We advise conducting a followup assessment of the Application Architecture
Audit against OpenCRVS version 1.3 which is now available, but wasn’t ready at
the time of our Audit.

■ Specifically focusing on the additional external dependency of Metabase
to facilitate the functional feature of graphs and dashboards for vital
statistics. The security, privacy and operational implications of this new
dependency should be explored.

○ No licensing fees, but consider all of the additional elements necessary for ‘Total
Cost of Ownership’
https://www.opencrvs.org/uploads/images/Understanding-the-costs-of-an-Open
CRVS-Implementation.pdf.

○ The microservices architecture is flexible and scalable, and the use of third-party
software packages and services provides a solid foundation for the system.
However, the distributed nature of the architecture and the use of many
third-party dependencies mean that the system is complex and will require
specialised expertise to manage and maintain effectively.

● Penetration Testing
○ There are still a number of high and medium issues to resolve, and supplemental

rounds of penetration testing to perform to verify full resolution of open issues.

● DevSecOps
○ It would be advisable to break down the Ansible playbook into roles, even if these

are just maintained within the same repository, to provide individual testable and
documentable units. There are also issues with idempotency in the playbooks.

○ Recommendation: There is no guidance offered for how to manage this SSH key,
although we would recommend that this is also using a hardware token.

○ Recommendation: We would recommend that the system be deployed without
these specific post-installation modifications for encrypted storage, using
encrypted LVM from the start.

○ Recommendation: We would recommend that the deployment playbooks be
merged together and the true and intentional differences are extracted as
variables or controlled with conditional statements.

○ Recommendation on production deployment: We recommend that at least a
stateful firewall is used to protect the IP subnet on which the cluster is deployed
and that that subnet should be isolated at layer 2, either by VLAN or physical
layer separation.

○ Recommendation: Mozilla's sops may be used to encrypt the relevant secrets
and store these alongside the rest of the IaC.

OpenCRVS Evaluation Report 2023/2024

57

https://www.opencrvs.org/uploads/images/Understanding-the-costs-of-an-OpenCRVS-Implementation.pdf
https://www.opencrvs.org/uploads/images/Understanding-the-costs-of-an-OpenCRVS-Implementation.pdf


○ Recommendation: 3rd party customizations should be limited in the production
environment, and in systems that have the ability to pass on code and
configuration unaudited to the production environment, to only those that are
strictly necessary to either perform the configuration and deployment or to
mitigate or remediate other identified risks.

Closing
Our team has many years of experience working with, testing, building on, and deploying
open-source projects and platforms. Behind these efforts are a wide variety of people and
teams who vary in terms of scale, experience, quality, reliability, vision, and commitment. Finding
the needed blend and balance of creativity and experience, innovation and reliability, to achieve
a usable, dependable solution, is always difficult. You might have someone who can quickly
prove something is possible with a clever bit of code, but then not have the follow through to
implement all the needed features. Alternatively, you may have someone who is meticulous and
detailed, but not flexible enough to quickly update, iterate, and improve their work as their
growing communities demand. In addition, there are the many decisions of how to build a
solution - do you write everything from scratch or first principles, because you believe you must
or are have some kind of scratch itch, or do you commit yourself to depending upon, and
supporting, a rich ecosystem of open-source modules, libraries, and services? There isn’t really
an answer, only a path forward, and the requirements and expectations that come with it.

With OpenCRVS, we strongly feel they have navigated these many complexities deftly and
wisely, to create a solid “1st generation” open-source eCRVS solution, backed by a robust,
committed team. It is truly an open-source solution, developed transparently, with open
documentation, issue tracking, bug reporting, auditing, and more. This isn’t a project built in a
proprietary manner, whose code was then dumped as a zip file into a github repo. OpenCRVS
understands what it means to be open, and embraces that. This also includes focusing on what
they know how to address at the core, both from CRVS requirements perspective and target
community usability needs, and utilise existing third-party code as often as they can. We
approve of this approach, and it has allowed their solution to come a long way very quickly.

The downside of both being a relatively new solution and depending upon an ecosystem of
dependencies, are the possible vulnerabilities that you expose yourself to. Throughout this
process we have discovered a number of them, be it within the source code itself, or the version
of nodeJS it is built upon, or regarding the security of how an instance is deployed. This was not
unexpected or a surprise to find the sort of issues we did, at this stage in the project. What was
a surprise was how engaged and positive the OpenCRVS team was at reviewing and addressing
the issues. Fixes were implemented, nodeJS was updated, deployment configurations were

OpenCRVS Evaluation Report 2023/2024

58



improved. These are very good signs of a healthy project, who is ready to face the challenges of
the real world.

All that being said, we do have strong concerns about improving the documentation that truly
will allow this project to be “self-service” deployed. If we do want OpenCRVS to be a key solution
for scaling up eCRVS around the world, we all need to ensure it can be deployed in repeatable,
reliable, private and secure manner, by anyone who is qualified to do so. The commitment to
open, quality documentation is there, but there needs to be some confusing aspects ironed out,
some additional pieces provided, and some improved scripts and deployment tools provided.

It has been a pleasure reviewing the OpenCRVS solution.

Appendix
Website: https://www.opencrvs.org/
Documentation link: https://documentation.opencrvs.org/
Case Studies: https://www.opencrvs.org/about-us/case-studies
March 14, 2023 - Live Product Demo over Zoom (Raw Notes here:
https://docs.google.com/document/d/17CWjDPqyJZ6s4IBHlLxXgCRratHvSgR-s
KimZ9UedXE/edit?usp=sharing)
Github Issue list for core OpenCRVS codebase
https://github.com/opencrvs/opencrvs-core/issues
PDF reports of finding from Vulnerability Scans and Automated Pen Testing area
available here:
https://drive.google.com/drive/folders/1VfeO4JZOqyEUm6CcWnG7qeSY6UPdW
VyA?usp=sharing
PDF report of the Manual Penetration test is available here:
https://drive.google.com/file/d/1HwYzlczp9QAiGP2ySXqfeZTuBsLsVV3i/view?u
sp=sharing
Software Bill of Materials (SBOMs) archive format

SBOMs in JSON format are available here:
https://drive.google.com/drive/folders/1gmNYA2DeaKXzV_f7lDmdJBF1b
w_n2bTH

Annex– Issue Resolutions & Mitigations
Since our assessment, OpenCRVS has been busy addressing the issues found while integrating
feedback and making improvements to their overall code. Numerous technical enhancements
have been made to the platform, and they are now about to release OpenCRVS v1.5.0
OpenCRVS Evaluation Report 2023/2024

59

https://www.opencrvs.org/
https://documentation.opencrvs.org/
https://www.opencrvs.org/about-us/case-studies
https://docs.google.com/document/d/17CWjDPqyJZ6s4IBHlLxXgCRratHvSgR-sKimZ9UedXE/edit?usp=sharing
https://docs.google.com/document/d/17CWjDPqyJZ6s4IBHlLxXgCRratHvSgR-sKimZ9UedXE/edit?usp=sharing
https://github.com/opencrvs/opencrvs-core/issues
https://drive.google.com/drive/folders/1VfeO4JZOqyEUm6CcWnG7qeSY6UPdWVyA?usp=sharing
https://drive.google.com/drive/folders/1VfeO4JZOqyEUm6CcWnG7qeSY6UPdWVyA?usp=sharing
https://drive.google.com/file/d/1HwYzlczp9QAiGP2ySXqfeZTuBsLsVV3i/view?usp=sharing
https://drive.google.com/file/d/1HwYzlczp9QAiGP2ySXqfeZTuBsLsVV3i/view?usp=sharing
https://drive.google.com/drive/folders/1gmNYA2DeaKXzV_f7lDmdJBF1bw_n2bTH
https://drive.google.com/drive/folders/1gmNYA2DeaKXzV_f7lDmdJBF1bw_n2bTH
https://documentation.opencrvs.org/general/releases/v1.5.0-release-notes


(https://documentation.opencrvs.org/general/releases/v1.5.0-release-notes). The following
issues, recommendations and resolutions are based on communication with the OpenCRVS
core team, our report findings and their updates with release candidate OpenCRVS v1.5.0.

Manual Penetration Test Notes
In the Manual Penetration test report, 1 of the Critical and many of the High and Medium
findings were in fact related to:

● https://community.opencrvs.org (A forum website powered by Discourse)
● https://documentation.opencrvs.org (A docs website powered by Gitbook)

None of these issues have anything to do with OpenCRVS Core Civil Registration application.

Found Issues, Recommendations & Resolutions

Web Application Recommendations

OpenCRVS v1.3.0
assessment

OpenCRVS v1.5.0
upcoming release

Notes

Critical: JWT None hashing
Algortihm

Resolved Crypto replaced by bcrypt Pull
request:
https://github.com/opencrvs/
opencrvs-core/pull/5024
Issue:
https://github.com/opencrvs/
opencrvs-core/issues/4979

Critical: Mongo injection Not Applicable The finding was on
community.opencrvs.org (a
Discourse community forum)
which has nothing to do with
the OpenCRVS Core civil
registration application.

High: SQL Injection Not Applicable The finding was on
community.opencrvs.org (a

OpenCRVS Evaluation Report 2023/2024

60

https://documentation.opencrvs.org/general/releases/v1.5.0-release-notes
https://community.opencrvs.org/
https://www.discourse.org/
https://documentation.opencrvs.org/
https://www.gitbook.com/
https://github.com/opencrvs/
https://github.com/opencrvs/
https://github.com/opencrvs/
https://github.com/opencrvs/


Web Application Recommendations

OpenCRVS v1.3.0
assessment

OpenCRVS v1.5.0
upcoming release

Notes

Discourse community forum)
which has nothing to do with
the OpenCRVS Core civil
registration application.

High: Backup file exposure Not Applicable The test failure refers to their
documentation website,
powered by Gitbook and has
no relation to the OpenCRVS
Core civil registration
application.

High: Insecure password
change mechanism

Not Applicable Suggestion: A current
password should be required
to change the email address
or password.
Response: The current
password has always been
required to change the
password. Email changes do
not take effect without a 2FA
code. Therefore a possible
mistake in reporting.

High: CSP Not Applicable A Content Security Policy
header is in place via Nginx.
We posit that this is present
in the documented responses
from OpenCRVS Core and
implemented correctly in the
core application. The test
failures point out that it is not
implemented in
documentation, as that is
powered by Gitbook and has
no relation to the OpenCRVS
Core civil registration
application.

OpenCRVS Evaluation Report 2023/2024

61



Web Application Recommendations

OpenCRVS v1.3.0
assessment

OpenCRVS v1.5.0
upcoming release

Notes

Medium: Issues with Gitbook Not Applicable Many medium findings are
related to
documentation.opencrvs.org
(a Gitbook documentation
site) which has nothing to do
with the OpenCRVS Core civil
registration application.

Medium: Rate limiting Resolved Introduced in OpenCRVS
v1.5.0:
https://github.com/opencrvs/
opencrvs-core/issues/5930

Medium: Lockout policy Resolved Resolved by rate limiting. A
lockout policy would not be
an effective solution in low
resource settings as it would
be an operational
management overhead.

Medium: Username
enumeration

Not Applicable The failure describes “If an
account associated with the
provided email address
exists, an email containing
instructions on how to reset
the password would be sent.
” This is true, but no other
approach for forgotten
usernames can be proposed
without operational overhead
in low resource settings. The
email account of the
government staff member
must be secured with a
strong password and 2FA as
advised in our Data Security
Framework

OpenCRVS Evaluation Report 2023/2024

62

http://documentation.opencrvs.org
https://github.com/opencrvs/
https://github.com/opencrvs/


Infrastructure Recommendations

OpenCRVS v1.3.0
assessment

OpenCRVS v1.5.0
upcoming release

Notes

Port 8200, 9000, 9001 & 9200
open

Resolved These ports were open in
v1.3.0 for debugging but
protected behind strong
passwords. No data was
accessible behind them. They
have since been closed. The
Minio console is removed.

Port 22 Resolved The SSH_PORT is now
configurable in OpenCRVS
v1.5.0 via Github Secrets
depending on country
requirements to any port the
country chooses to use.

SSH Keys Resolved Ansible user steps now lock
down root access for all SSH
users. A “provision” SSH
user’s id_rsa is now secure in
Github Secrets. All SSH users
require Google Authenticator
when connecting and every
SSH access fires an alert to a
shared channel / email
address.

Ansible Playbooks & Secrets Resolved Ansible playbooks are now
broken down into easily
testable plugins. All
playbooks can be repeatedly
run together or individually.
Ansible is now no longer run
from the command line, but
run via provision pipelines in
Github Actions. All secrets
are now supplied by Github
Secrets using the Ansible
vars plugin as advised. So

OpenCRVS Evaluation Report 2023/2024

63



Infrastructure Recommendations

OpenCRVS v1.3.0
assessment

OpenCRVS v1.5.0
upcoming release

Notes

secrets are no longer
potentially stored in the
command history of the shell.
Using Github Secrets
mitigates any need for a
Hardware Security Module.
Although an HSM or YubiKey
would still be a
recommendation for LVM
encryption keys.

Vulnerability Scanning Resolved All containers are now
scanned by Trivy.

TLS Version Detect Resolved An upgrade to Traefik
resolved this:
https://github.com/opencrvs/
opencrvs-farajaland/pull/607

Node Version Resolved Node is upgraded to v18 in
OpenCRVS v1.5.0.

OpenCRVS Evaluation Report 2023/2024

64

https://github.com/opencrvs/
https://github.com/opencrvs/

